These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 22809998)
1. Mutation-independent rescue of a novel mouse model of Retinitis Pigmentosa. Greenwald DL; Cashman SM; Kumar-Singh R Gene Ther; 2013 Apr; 20(4):425-34. PubMed ID: 22809998 [TBL] [Abstract][Full Text] [Related]
2. Allele-specific editing ameliorates dominant retinitis pigmentosa in a transgenic mouse model. Patrizi C; Llado M; Benati D; Iodice C; Marrocco E; Guarascio R; Surace EM; Cheetham ME; Auricchio A; Recchia A Am J Hum Genet; 2021 Feb; 108(2):295-308. PubMed ID: 33508235 [TBL] [Abstract][Full Text] [Related]
3. AAV delivery of wild-type rhodopsin preserves retinal function in a mouse model of autosomal dominant retinitis pigmentosa. Mao H; James T; Schwein A; Shabashvili AE; Hauswirth WW; Gorbatyuk MS; Lewin AS Hum Gene Ther; 2011 May; 22(5):567-75. PubMed ID: 21126223 [TBL] [Abstract][Full Text] [Related]
4. Long-term rescue of retinal structure and function by rhodopsin RNA replacement with a single adeno-associated viral vector in P23H RHO transgenic mice. Mao H; Gorbatyuk MS; Rossmiller B; Hauswirth WW; Lewin AS Hum Gene Ther; 2012 Apr; 23(4):356-66. PubMed ID: 22289036 [TBL] [Abstract][Full Text] [Related]
5. Effect of AAV-Mediated Rhodopsin Gene Augmentation on Retinal Degeneration Caused by the Dominant P23H Rhodopsin Mutation in a Knock-In Murine Model. Orlans HO; Barnard AR; Patrício MI; McClements ME; MacLaren RE Hum Gene Ther; 2020 Jul; 31(13-14):730-742. PubMed ID: 32394751 [TBL] [Abstract][Full Text] [Related]
6. Rhodopsin Genomic Loci DNA Nanoparticles Improve Expression and Rescue of Retinal Degeneration in a Model for Retinitis Pigmentosa. Zheng M; Mitra RN; Weiss ER; Han Z Mol Ther; 2020 Feb; 28(2):523-535. PubMed ID: 31879189 [TBL] [Abstract][Full Text] [Related]
7. Knockdown of wild-type mouse rhodopsin using an AAV vectored ribozyme as part of an RNA replacement approach. Gorbatyuk MS; Pang JJ; Thomas J; Hauswirth WW; Lewin AS Mol Vis; 2005 Aug; 11():648-56. PubMed ID: 16145542 [TBL] [Abstract][Full Text] [Related]
8. Mirtron-mediated RNA knockdown/replacement therapy for the treatment of dominant retinitis pigmentosa. Orlans HO; McClements ME; Barnard AR; Martinez-Fernandez de la Camara C; MacLaren RE Nat Commun; 2021 Aug; 12(1):4934. PubMed ID: 34400638 [TBL] [Abstract][Full Text] [Related]
9. Long-term protection of retinal structure but not function using RAAV.CNTF in animal models of retinitis pigmentosa. Liang FQ; Aleman TS; Dejneka NS; Dudus L; Fisher KJ; Maguire AM; Jacobson SG; Bennett J Mol Ther; 2001 Nov; 4(5):461-72. PubMed ID: 11708883 [TBL] [Abstract][Full Text] [Related]
10. Transplantation of bone marrow-derived mesenchymal stem cells rescue photoreceptor cells in the dystrophic retina of the rhodopsin knockout mouse. Arnhold S; Absenger Y; Klein H; Addicks K; Schraermeyer U Graefes Arch Clin Exp Ophthalmol; 2007 Mar; 245(3):414-22. PubMed ID: 16896916 [TBL] [Abstract][Full Text] [Related]
12. Gene delivery of wild-type rhodopsin rescues retinal function in an autosomal dominant retinitis pigmentosa mouse model. Mao H; Gorbatyuk MS; Hauswirth WW; Lewin AS Adv Exp Med Biol; 2012; 723():199-205. PubMed ID: 22183334 [TBL] [Abstract][Full Text] [Related]
13. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Koch S; Sothilingam V; Garcia Garrido M; Tanimoto N; Becirovic E; Koch F; Seide C; Beck SC; Seeliger MW; Biel M; Mühlfriedel R; Michalakis S Hum Mol Genet; 2012 Oct; 21(20):4486-96. PubMed ID: 22802073 [TBL] [Abstract][Full Text] [Related]
14. Gene therapy provides long-term visual function in a pre-clinical model of retinitis pigmentosa. Wert KJ; Davis RJ; Sancho-Pelluz J; Nishina PM; Tsang SH Hum Mol Genet; 2013 Feb; 22(3):558-67. PubMed ID: 23108158 [TBL] [Abstract][Full Text] [Related]
15. Binocular benefit following monocular subretinal AAV injection in a mouse model of autosomal dominant retinitis pigmentosa (adRP). Ahmed CM; Massengill MT; Ildefonso CJ; Jalligampala A; Zhu P; Li H; Patel AP; McCall MA; Lewin AS Vision Res; 2023 May; 206():108189. PubMed ID: 36773475 [TBL] [Abstract][Full Text] [Related]
16. Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78. Gorbatyuk MS; Knox T; LaVail MM; Gorbatyuk OS; Noorwez SM; Hauswirth WW; Lin JH; Muzyczka N; Lewin AS Proc Natl Acad Sci U S A; 2010 Mar; 107(13):5961-6. PubMed ID: 20231467 [TBL] [Abstract][Full Text] [Related]
17. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Millington-Ward S; Chadderton N; O'Reilly M; Palfi A; Goldmann T; Kilty C; Humphries M; Wolfrum U; Bennett J; Humphries P; Kenna PF; Farrar GJ Mol Ther; 2011 Apr; 19(4):642-9. PubMed ID: 21224835 [TBL] [Abstract][Full Text] [Related]
18. Wheel running exercise protects against retinal degeneration in the I307N rhodopsin mouse model of inducible autosomal dominant retinitis pigmentosa. Zhang X; Girardot PE; Sellers JT; Li Y; Wang J; Chrenek MA; Wu W; Skelton H; Nickerson JM; Pardue MT; Boatright JH Mol Vis; 2019; 25():462-476. PubMed ID: 31523123 [TBL] [Abstract][Full Text] [Related]
19. Preservation of photoreceptor morphology and function in P23H rats using an allele independent ribozyme. Gorbatyuk M; Justilien V; Liu J; Hauswirth WW; Lewin AS Exp Eye Res; 2007 Jan; 84(1):44-52. PubMed ID: 17083931 [TBL] [Abstract][Full Text] [Related]
20. AAV-mediated ERdj5 overexpression protects against P23H rhodopsin toxicity. Aguilà M; Bellingham J; Athanasiou D; Bevilacqua D; Duran Y; Maswood R; Parfitt DA; Iwawaki T; Spyrou G; Smith AJ; Ali RR; Cheetham ME Hum Mol Genet; 2020 May; 29(8):1310-1318. PubMed ID: 32196553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]