These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22810361)

  • 21. Electrochemical detection of DNase I activity.
    Fujita K; Kanazawa M; Mukumoto K; Nojima T; Sato S; Kondo H; Waki M; Takenaka S
    Nucleic Acids Symp Ser (Oxf); 2006; (50):307-8. PubMed ID: 17150940
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tethered molecular redox capacitors for nanoconfinement-assisted electrochemical signal amplification.
    Kang M; Mun C; Jung HS; Ansah IB; Kim E; Yang H; Payne GF; Kim DH; Park SG
    Nanoscale; 2020 Feb; 12(6):3668-3676. PubMed ID: 31793610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of redox polymer based electrode and electrochemical behavior for DNA detection.
    Kuralay F; Erdem A; Abaci S; Ozyörük H; Yildiz A
    Anal Chim Acta; 2009 Jun; 643(1-2):83-9. PubMed ID: 19446067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pseudo-single-crystal electrochemistry on polycrystalline electrodes: visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction.
    Aaronson BD; Chen CH; Li H; Koper MT; Lai SC; Unwin PR
    J Am Chem Soc; 2013 Mar; 135(10):3873-80. PubMed ID: 23405963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Host-guest chemistry at interface for photoswitchable bioelectrocatalysis.
    Wan P; Xing Y; Chen Y; Chi L; Zhang X
    Chem Commun (Camb); 2011 Jun; 47(21):5994-6. PubMed ID: 21509391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical gene-function analysis for single cells with addressable microelectrode/microwell arrays.
    Lin Z; Takahashi Y; Murata T; Takeda M; Ino K; Shiku H; Matsue T
    Angew Chem Int Ed Engl; 2009; 48(11):2044-6. PubMed ID: 19191275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TEMPO/viologen electrochemical heterojunction for diffusion-controlled redox mediation: a highly rectifying bilayer-sandwiched device based on cross-reaction at the interface between dissimilar redox polymers.
    Tokue H; Oyaizu K; Sukegawa T; Nishide H
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4043-9. PubMed ID: 24559298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanofluidic redox cycling amplification for the selective detection of catechol.
    Wolfrum B; Zevenbergen M; Lemay S
    Anal Chem; 2008 Feb; 80(4):972-7. PubMed ID: 18193890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemistry of room temperature protic ionic liquids: a critical assessment for use as electrolytes in electrochemical applications.
    Lu X; Burrell G; Separovic F; Zhao C
    J Phys Chem B; 2012 Aug; 116(30):9160-70. PubMed ID: 22784243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SU-8-based flexible amperometric device with IDA electrodes to regenerate redox species in small spaces.
    Kanno Y; Goto T; Ino K; Inoue KY; Takahashi Y; Shiku H; Matsue T
    Anal Sci; 2014; 30(2):305-9. PubMed ID: 24521920
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor.
    Kim E; Gordonov T; Bentley WE; Payne GF
    Anal Chem; 2013 Feb; 85(4):2102-8. PubMed ID: 23311878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. "Outer-sphere to inner-sphere" redox cycling for ultrasensitive immunosensors.
    Akanda MR; Choe YL; Yang H
    Anal Chem; 2012 Jan; 84(2):1049-55. PubMed ID: 22208164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications.
    Vashist SK; Zheng D; Al-Rubeaan K; Luong JH; Sheu FS
    Biotechnol Adv; 2011; 29(2):169-88. PubMed ID: 21034805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensitive and selective trypsin detection using redox cycling in the presence of L-ascorbic acid.
    Park S; Yang H
    Analyst; 2014 Aug; 139(16):4051-5. PubMed ID: 24955437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An addressable microelectrode array for electrochemical detection.
    Lin Z; Takahashi Y; Kitagawa Y; Umemura T; Shiku H; Matsue T
    Anal Chem; 2008 Sep; 80(17):6830-3. PubMed ID: 18665613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of interfacial microstructure on the lipid oxidation stability of oil-in-water emulsions.
    Kargar M; Spyropoulos F; Norton IT
    J Colloid Interface Sci; 2011 May; 357(2):527-33. PubMed ID: 21388633
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time electrochemical monitoring of the polymerase chain reaction by mediated redox catalysis.
    Deféver T; Druet M; Rochelet-Dequaire M; Joannes M; Grossiord C; Limoges B; Marchal D
    J Am Chem Soc; 2009 Aug; 131(32):11433-41. PubMed ID: 19722651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sensing with nanopores--the influence of asymmetric blocking on electrochemical redox cycling current.
    Krause KJ; Kätelhön E; Lemay SG; Compton RG; Wolfrum B
    Analyst; 2014 Nov; 139(21):5499-503. PubMed ID: 25237677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Drop-in-well chamber for droplet interface bilayer with built-in electrodes.
    Urakubo K; Iwamoto M; Oiki S
    Methods Enzymol; 2019; 621():347-363. PubMed ID: 31128788
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Response time of nanofluidic electrochemical sensors.
    Kang S; Mathwig K; Lemay SG
    Lab Chip; 2012 Apr; 12(7):1262-7. PubMed ID: 22361835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.