These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 22810579)
1. Metal overlayer on metal carbide substrate: unique bimetallic properties for catalysis and electrocatalysis. Kelly TG; Chen JG Chem Soc Rev; 2012 Dec; 41(24):8021-34. PubMed ID: 22810579 [TBL] [Abstract][Full Text] [Related]
2. A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides. Esposito DV; Hunt ST; Kimmel YC; Chen JG J Am Chem Soc; 2012 Feb; 134(6):3025-33. PubMed ID: 22280370 [TBL] [Abstract][Full Text] [Related]
3. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds. Deng Y; Ge Y; Xu M; Yu Q; Xiao D; Yao S; Ma D Acc Chem Res; 2019 Dec; 52(12):3372-3383. PubMed ID: 31411856 [TBL] [Abstract][Full Text] [Related]
4. Reactions of water and C1 molecules on carbide and metal-modified carbide surfaces. Wan W; Tackett BM; Chen JG Chem Soc Rev; 2017 Apr; 46(7):1807-1823. PubMed ID: 28229154 [TBL] [Abstract][Full Text] [Related]
5. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Zhang H; Jin M; Xia Y Chem Soc Rev; 2012 Dec; 41(24):8035-49. PubMed ID: 23080521 [TBL] [Abstract][Full Text] [Related]
6. Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation. Maillard F; Lu GQ; Wieckowski A; Stimming U J Phys Chem B; 2005 Sep; 109(34):16230-43. PubMed ID: 16853064 [TBL] [Abstract][Full Text] [Related]
7. Platinum-carbide interactions: core-shells for catalytic use. Yates JL; Spikes GH; Jones G Phys Chem Chem Phys; 2015 Feb; 17(6):4250-8. PubMed ID: 25573603 [TBL] [Abstract][Full Text] [Related]
8. Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. Luo J; Njoki PN; Lin Y; Mott D; Wang L; Zhong CJ Langmuir; 2006 Mar; 22(6):2892-8. PubMed ID: 16519500 [TBL] [Abstract][Full Text] [Related]
9. High activity carbide supported catalysts for water gas shift. Schweitzer NM; Schaidle JA; Ezekoye OK; Pan X; Linic S; Thompson LT J Am Chem Soc; 2011 Mar; 133(8):2378-81. PubMed ID: 21291250 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. Peng Z; Yang H J Am Chem Soc; 2009 Jun; 131(22):7542-3. PubMed ID: 19438286 [TBL] [Abstract][Full Text] [Related]
11. Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis. Hunt ST; Nimmanwudipong T; Román-Leshkov Y Angew Chem Int Ed Engl; 2014 May; 53(20):5131-6. PubMed ID: 24700729 [TBL] [Abstract][Full Text] [Related]
12. Effects of carbon on the stability and chemical performance of transition metal carbides: a density functional study. Liu P; Rodriguez JA J Chem Phys; 2004 Mar; 120(11):5414-23. PubMed ID: 15267415 [TBL] [Abstract][Full Text] [Related]
13. Carbon release by selective alloying of transition metal carbides. Råsander M; Lewin E; Wilhelmsson O; Sanyal B; Klintenberg M; Eriksson O; Jansson U J Phys Condens Matter; 2011 Sep; 23(35):355401. PubMed ID: 21849716 [TBL] [Abstract][Full Text] [Related]
14. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. Stamenkovic VR; Mun BS; Mayrhofer KJ; Ross PN; Markovic NM J Am Chem Soc; 2006 Jul; 128(27):8813-9. PubMed ID: 16819874 [TBL] [Abstract][Full Text] [Related]
15. Tailoring the reactivity of bimetallic overlayer and surface alloy systems. Groß A J Phys Condens Matter; 2009 Feb; 21(8):084205. PubMed ID: 21817357 [TBL] [Abstract][Full Text] [Related]
16. Rational Synthesis for a Noble Metal Carbide. Wakisaka T; Kusada K; Wu D; Yamamoto T; Toriyama T; Matsumura S; Akiba H; Yamamuro O; Ikeda K; Otomo T; Palina N; Chen Y; Kumara LSR; Song C; Sakata O; Xie W; Koyama M; Kubota Y; Kawaguchi S; Arevalo RL; Aspera SM; Arguelles EF; Nakanishi H; Kitagawa H J Am Chem Soc; 2020 Jan; 142(3):1247-1253. PubMed ID: 31750648 [TBL] [Abstract][Full Text] [Related]
17. Another way of looking at bonding on bimetallic surfaces: the role of spin polarization of surface metal d states. Escaño MC; Nguyen TQ; Nakanishi H; Kasai H J Phys Condens Matter; 2009 Dec; 21(49):492201. PubMed ID: 21836186 [TBL] [Abstract][Full Text] [Related]
18. Activation of noble metals on metal-carbide surfaces: novel catalysts for CO oxidation, desulfurization and hydrogenation reactions. Rodriguez JA; Illas F Phys Chem Chem Phys; 2012 Jan; 14(2):427-38. PubMed ID: 22108864 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. Guo S; Dong S; Wang E ACS Nano; 2010 Jan; 4(1):547-55. PubMed ID: 20000845 [TBL] [Abstract][Full Text] [Related]
20. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]