BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 22811244)

  • 1. Exposure to critical thermal maxima increases oxidative stress in hearts of white- but not red-blooded Antarctic notothenioid fishes.
    Mueller IA; Devor DP; Grim JM; Beers JM; Crockett EL; O'Brien KM
    J Exp Biol; 2012 Oct; 215(Pt 20):3655-64. PubMed ID: 22811244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter-relationship between mitochondrial function and susceptibility to oxidative stress in red- and white-blooded Antarctic notothenioid fishes.
    Mueller IA; Grim JM; Beers JM; Crockett EL; O'Brien KM
    J Exp Biol; 2011 Nov; 214(Pt 22):3732-41. PubMed ID: 22031737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hearts of some Antarctic fishes lack mitochondrial creatine kinase.
    O'Brien KM; Mueller IA; Orczewska JI; Dullen KR; Ortego M
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():30-6. PubMed ID: 25151023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal tolerance of Antarctic notothenioid fishes correlates with level of circulating hemoglobin.
    Beers JM; Sidell BD
    Physiol Biochem Zool; 2011; 84(4):353-62. PubMed ID: 21743249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetic costs of protein synthesis do not differ between red- and white-blooded Antarctic notothenioid fishes.
    Lewis JM; Grove TJ; O'Brien KM
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Sep; 187():177-83. PubMed ID: 26051614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High mitochondrial densities in the hearts of Antarctic icefishes are maintained by an increase in mitochondrial size rather than mitochondrial biogenesis.
    Urschel MR; O'Brien KM
    J Exp Biol; 2008 Aug; 211(Pt 16):2638-46. PubMed ID: 18689417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperoxia Does Not Extend Critical Thermal Maxima (CTmax) in White- or Red-Blooded Antarctic Notothenioid Fishes.
    Devor DP; Kuhn DE; O'Brien KM; Crockett EL
    Physiol Biochem Zool; 2016; 89(1):1-9. PubMed ID: 27082520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The loss of hemoglobin and myoglobin does not minimize oxidative stress in Antarctic icefishes.
    O'Brien KM; Crockett EL; Philip J; Oldham CA; Hoffman M; Kuhn DE; Barry R; McLaughlin J
    J Exp Biol; 2018 Mar; 221(Pt 5):. PubMed ID: 29361578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal profiles reveal stark contrasts in properties of biological membranes from heart among Antarctic notothenioid fishes which vary in expression of hemoglobin and myoglobin.
    Evans ER; Farnoud AM; O'Brien KM; Crockett EL
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 252():110539. PubMed ID: 33242660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resilience of cardiac performance in Antarctic notothenioid fishes in a warming climate.
    O'Brien KM; Joyce W; Crockett EL; Axelsson M; Egginton S; Farrell AP
    J Exp Biol; 2021 May; 224(10):. PubMed ID: 34042975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expansion of capacities for iron transport and sequestration reflects plasma volumes and heart mass among white-blooded notothenioid fishes.
    Kuhn DE; O'Brien KM; Crockett EL
    Am J Physiol Regul Integr Comp Physiol; 2016 Oct; 311(4):R649-R657. PubMed ID: 27465736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the hypoxia-inducible factor-1 pathway in hearts of Antarctic notothenioid fishes.
    O'Brien KM; Rix AS; Grove TJ; Sarrimanolis J; Brooking A; Roberts M; Crockett EL
    Comp Biochem Physiol B Biochem Mol Biol; 2020 Dec; 250():110505. PubMed ID: 32966875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of mitochondrial glycerol-3-phosphate acyltransferase in notothenioid fishes.
    Keenan KA; Grove TJ; Oldham CA; O'Brien KM
    Comp Biochem Physiol B Biochem Mol Biol; 2017 Feb; 204():9-26. PubMed ID: 27836743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac mitochondrial metabolism may contribute to differences in thermal tolerance of red- and white-blooded Antarctic notothenioid fishes.
    O'Brien KM; Rix AS; Egginton S; Farrell AP; Crockett EL; Schlauch K; Woolsey R; Hoffman M; Merriman S
    J Exp Biol; 2018 Aug; 221(Pt 15):. PubMed ID: 29895681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle fine structure may maintain the function of oxidative fibres in haemoglobinless Antarctic fishes.
    O'Brien KM; Skilbeck C; Sidell BD; Egginton S
    J Exp Biol; 2003 Jan; 206(Pt 2):411-21. PubMed ID: 12477911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship among circulating hemoglobin, nitric oxide synthase activities and angiogenic poise in red- and white-blooded Antarctic notothenioid fishes.
    Beers JM; Borley KA; Sidell BD
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Aug; 156(4):422-9. PubMed ID: 20362691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain and sense organ anatomy and histology in hemoglobinless Antarctic icefishes (Perciformes: Notothenioidei: Channichthyidae).
    Eastman JT; Lannoo MJ
    J Morphol; 2004 Apr; 260(1):117-40. PubMed ID: 15052601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peripheral oxygen transport in skeletal muscle of Antarctic and sub-Antarctic notothenioid fish.
    Egginton S; Skilbeck C; Hoofd L; Calvo J; Johnston IA
    J Exp Biol; 2002 Mar; 205(Pt 6):769-79. PubMed ID: 11914385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial membranes in cardiac muscle from Antarctic notothenioid fishes vary in phospholipid composition and membrane fluidity.
    Biederman AM; Kuhn DE; O'Brien KM; Crockett EL
    Comp Biochem Physiol B Biochem Mol Biol; 2019 Sep; 235():46-53. PubMed ID: 31176865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The unique mitochondrial form and function of Antarctic channichthyid icefishes.
    O'Brien KM; Mueller IA
    Integr Comp Biol; 2010 Dec; 50(6):993-1008. PubMed ID: 21558255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.