These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2281194)

  • 1. Coupling of energy to glucose transport by the bacterial phosphotransferase system.
    Erni B
    Res Microbiol; 1990; 141(3):360-4. PubMed ID: 2281194
    [No Abstract]   [Full Text] [Related]  

  • 2. Coupling of energy to D-mannitol transport in Escherichia coli.
    Jacobson GR
    Res Microbiol; 1990; 141(3):365-8. PubMed ID: 2126390
    [No Abstract]   [Full Text] [Related]  

  • 3. Mechanism of sugar transport and phosphorylation via permeases of the bacterial phosphotransferase system: catalytic residues in the beta-glucoside-specific permease as defined by site-specific mutagenesis.
    Sutrina SL; Schnetz K; Rak B; Saier MH
    Res Microbiol; 1990; 141(3):368-74. PubMed ID: 2281195
    [No Abstract]   [Full Text] [Related]  

  • 4. Regulation of lactose transport by the phosphoenolpyruvate-sugar phosphotransferase system in membrane vesicles of Escherichia coli.
    Dills SS; Schmidt MR; Saier MH
    J Cell Biochem; 1982; 18(2):239-44. PubMed ID: 7040431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate:glucose phosphotransferase system.
    Begley GS; Hansen DE; Jacobson GR; Knowles JR
    Biochemistry; 1982 Oct; 21(22):5552-6. PubMed ID: 6756472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Group translocation of glucose and other carbohydrates by the bacterial phosphotransferase system.
    Erni B
    Int Rev Cytol; 1992; 137():127-48. PubMed ID: 1428669
    [No Abstract]   [Full Text] [Related]  

  • 7. Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidylethanolamine in Escherichia coli: studies with a pssA mutant lacking phosphatidylserine synthase.
    Aboulwafa M; Hvorup R; Saier MH
    Arch Microbiol; 2004 Jan; 181(1):26-34. PubMed ID: 14634719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flux control of the bacterial phosphoenolpyruvate:glucose phosphotransferase system and the effect of diffusion.
    Francke C; Westerhoff HV; Blom JG; Peletier MA
    Mol Biol Rep; 2002; 29(1-2):21-6. PubMed ID: 12241059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic dissection of specificity determinants in the interaction of HPr with enzymes II of the bacterial phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli.
    Reichenbach B; Breustedt DA; Stülke J; Rak B; Görke B
    J Bacteriol; 2007 Jul; 189(13):4603-13. PubMed ID: 17449611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The roles of HPr and FPr in the utilization of fructose by Escherichia coli.
    Kornberg H
    FEBS Lett; 1986 Jan; 194(1):12-5. PubMed ID: 3510127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional regulation of the bgl operon of Escherichia coli involves phosphotransferase system-mediated phosphorylation of a transcriptional antiterminator.
    Amster-Choder O; Wright A
    J Cell Biochem; 1993 Jan; 51(1):83-90. PubMed ID: 7679391
    [No Abstract]   [Full Text] [Related]  

  • 12. Glucose transport in Escherichia coli.
    Erni B
    FEMS Microbiol Rev; 1989 Jun; 5(1-2):13-23. PubMed ID: 2699244
    [No Abstract]   [Full Text] [Related]  

  • 13. Changes in the cellular energy state affect the activity of the bacterial phosphotransferase system.
    Rohwer JM; Jensen PR; Shinohara Y; Postma PW; Westerhoff HV
    Eur J Biochem; 1996 Jan; 235(1-2):225-30. PubMed ID: 8631333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the phosphoenolpyruvate-dependent fructose phosphotransferase system in the utilization of mannose by Escherichia coli.
    Kornberg HL; Lambourne LT
    Proc Biol Sci; 1992 Oct; 250(1327):51-5. PubMed ID: 1361062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The general PTS component HPr determines the preference for glucose over mannitol.
    Choe M; Park YH; Lee CR; Kim YR; Seok YJ
    Sci Rep; 2017 Feb; 7():43431. PubMed ID: 28225088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy transduction and solute transport in streptococci.
    Konings WN; Otto R
    Antonie Van Leeuwenhoek; 1983 Sep; 49(3):247-57. PubMed ID: 6312880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta-glucoside permease represses the bgl operon of Escherichia coli by phosphorylation of the antiterminator protein and also interacts with glucose-specific enzyme III, the key element in catabolite control.
    Schnetz K; Rak B
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5074-8. PubMed ID: 2195546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel regulatory role of glucose transporter of Escherichia coli: membrane sequestration of a global repressor Mlc.
    Tanaka Y; Kimata K; Aiba H
    EMBO J; 2000 Oct; 19(20):5344-52. PubMed ID: 11032802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a site in the phosphocarrier protein, HPr, which influences its interactions with sugar permeases of the bacterial phosphotransferase system: kinetic analyses employing site-specific mutants.
    Koch S; Sutrina SL; Wu LF; Reizer J; Schnetz K; Rak B; Saier MH
    J Bacteriol; 1996 Feb; 178(4):1126-33. PubMed ID: 8576048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1H, 13C, and 15N resonance assignments of the phosphorylated enzyme IIB of the mannitol-specific phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli.
    Otten R; van Lune FS; Dijkstra K; Scheek RM
    J Biomol NMR; 2004 Dec; 30(4):461-2. PubMed ID: 15630568
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.