These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 2281231)
1. Group sequential designs using a family of type I error probability spending functions. Hwang IK; Shih WJ; De Cani JS Stat Med; 1990 Dec; 9(12):1439-45. PubMed ID: 2281231 [TBL] [Abstract][Full Text] [Related]
2. On adaptive error spending approach for group sequential trials with random information levels. Liu Q; Lim P; Nuamah I; Li Y J Biopharm Stat; 2012; 22(4):687-99. PubMed ID: 22651109 [TBL] [Abstract][Full Text] [Related]
3. An additive boundary for group sequential designs with connection to conditional error. Xi D; Gallo P Stat Med; 2019 Oct; 38(23):4656-4669. PubMed ID: 31338847 [TBL] [Abstract][Full Text] [Related]
4. Computations for group sequential boundaries using the Lan-DeMets spending function method. Reboussin DM; DeMets DL; Kim KM; Lan KK Control Clin Trials; 2000 Jun; 21(3):190-207. PubMed ID: 10822118 [TBL] [Abstract][Full Text] [Related]
5. Group sequential design for historical control trials using error spending functions. Wu J; Li Y J Biopharm Stat; 2020 Mar; 30(2):351-363. PubMed ID: 31718458 [TBL] [Abstract][Full Text] [Related]
6. Sample size calculation for planning group sequential longitudinal trials. Liu A; Boyett JM; Xiong X Stat Med; 2000 Jan; 19(2):205-20. PubMed ID: 10641025 [TBL] [Abstract][Full Text] [Related]
7. Optimal spending functions for asymmetric group sequential designs. Anderson KM Biom J; 2007 Jun; 49(3):337-45. PubMed ID: 17623339 [TBL] [Abstract][Full Text] [Related]
8. Implementing type I & type II error spending for two-sided group sequential designs. Rudser KD; Emerson SS Contemp Clin Trials; 2008 May; 29(3):351-8. PubMed ID: 17933592 [TBL] [Abstract][Full Text] [Related]
9. On the choice of times for data analysis in group sequential clinical trials. Li ZH; Geller NL Biometrics; 1991 Jun; 47(2):745-50. PubMed ID: 1912268 [TBL] [Abstract][Full Text] [Related]
10. Interim analysis: the alpha spending function approach. DeMets DL; Lan KK Stat Med; 1994 Jul 15-30; 13(13-14):1341-52; discussion 1353-6. PubMed ID: 7973215 [TBL] [Abstract][Full Text] [Related]
11. Information time scales for interim analyses of randomized clinical trials. Freidlin B; Othus M; Korn EL Clin Trials; 2016 Aug; 13(4):391-9. PubMed ID: 27136947 [TBL] [Abstract][Full Text] [Related]
12. Flexible implementations of group sequential stopping rules using constrained boundaries. Burington BE; Emerson SS Biometrics; 2003 Dec; 59(4):770-7. PubMed ID: 14969454 [TBL] [Abstract][Full Text] [Related]
13. Clinical trial designs based on sequential conditional probability ratio tests and reverse stochastic curtailing. Tan M; Xiong X; Kutner MH Biometrics; 1998 Jun; 54(2):682-95. PubMed ID: 9629648 [TBL] [Abstract][Full Text] [Related]
14. A general statistical principle for changing a design any time during the course of a trial. Müller HH; Schäfer H Stat Med; 2004 Aug; 23(16):2497-508. PubMed ID: 15287080 [TBL] [Abstract][Full Text] [Related]
15. Simulation study comparing exposure matching with regression adjustment in an observational safety setting with group sequential monitoring. Stratton KG; Cook AJ; Jackson LA; Nelson JC Stat Med; 2015 Mar; 34(7):1117-33. PubMed ID: 25510526 [TBL] [Abstract][Full Text] [Related]
17. A Bayesian sequential design using alpha spending function to control type I error. Zhu H; Yu Q Stat Methods Med Res; 2017 Oct; 26(5):2184-2196. PubMed ID: 26187736 [TBL] [Abstract][Full Text] [Related]
18. Design and analysis of group sequential logrank tests in maximum duration versus information trials. Kim K; Boucher H; Tsiatis AA Biometrics; 1995 Sep; 51(3):988-1000. PubMed ID: 7548714 [TBL] [Abstract][Full Text] [Related]
19. A useful design utilizing the information fraction in a group sequential clinical trial with censored survival data. Hsu CY; Chen CH; Hsu KN; Lu YH Biometrics; 2019 Mar; 75(1):133-143. PubMed ID: 30004574 [TBL] [Abstract][Full Text] [Related]
20. Optimal conditional error functions for the control of conditional power. Brannath W; Bauer P Biometrics; 2004 Sep; 60(3):715-23. PubMed ID: 15339294 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]