BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 22812488)

  • 1. A new transcutaneous bidirectional communication for monitoring implanted artificial heart using the human body as a conductive medium.
    Okamoto E; Kato Y; Seino K; Miura H; Shiraishi Y; Yambe T; Mitamura Y
    Artif Organs; 2012 Oct; 36(10):852-8. PubMed ID: 22812488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcutaneous communication system using the human body as conductive medium: influence of transmission data current on the heart.
    Okamoto E; Kikuchi S; Miura H; Shiraishi Y; Yambe T; Mitamura Y
    Biomed Mater Eng; 2013; 23(1-2):155-62. PubMed ID: 23442245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basic study of a transcutaneous information transmission system using intra-body communication.
    Okamoto E; Sato Y; Seino K; Kiyono T; Kato Y; Mitamura Y
    J Artif Organs; 2010 Jul; 13(2):117-20. PubMed ID: 20454914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-power transceiver analog front-end circuits for bidirectional high data rate wireless telemetry in medical endoscopy applications.
    Chi B; Yao J; Han S; Xie X; Li G; Wang Z
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1291-9. PubMed ID: 17605360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a bidirectional transcutaneous optical data transmission system for artificial hearts allowing long-distance data communication with low electric power consumption.
    Okamoto E; Yamamoto Y; Inoue Y; Makino T; Mitamura Y
    J Artif Organs; 2005; 8(3):149-53. PubMed ID: 16235031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of electrode-tissue interface impedance for improvement of a transcutaneous data transmission using human body as transmission medium.
    Okamoto E; Kato Y; Kikuchi S; Mitamura Y
    Biomed Mater Eng; 2014; 24(4):1735-42. PubMed ID: 24948457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo performance evaluation of a transcutaneous energy and information transmission system for the total artificial heart.
    Ahn JM; Kang DW; Kim HC; Min BG
    ASAIO J; 1993; 39(3):M208-12. PubMed ID: 8268530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micropower circuits for bidirectional wireless telemetry in neural recording applications.
    Neihart NM; Harrison RR
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1950-9. PubMed ID: 16285399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of titanium mesh electrode using for transcutaneous intrabody communication by tissue-electrode impedance.
    Okamoto E; Kikuchi S; Mitamura Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():667-70. PubMed ID: 24109775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wireless technologies for closed-loop retinal prostheses.
    Ng DC; Bai S; Yang J; Tran N; Skafidas E
    J Neural Eng; 2009 Dec; 6(6):065004. PubMed ID: 19850974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A power and data link for a wireless-implanted neural recording system.
    Rush AD; Troyk PR
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3255-62. PubMed ID: 22922687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A transcutaneous optical information transmission system for implantable motor-driven artificial hearts.
    Mitamura Y; Okamoto E; Mikami T
    ASAIO Trans; 1990; 36(3):M278-80. PubMed ID: 2252677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of data communication system with ultra high frequency radio wave for implantable artificial hearts.
    Tsujimura S; Yamagishi H; Sankai Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4110-5. PubMed ID: 19964616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of retroreflective transdermal optical wireless communication.
    Gil Y; Rotter N; Arnon S
    Appl Opt; 2012 Jun; 51(18):4232-9. PubMed ID: 22722303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo testing of a completely implanted total artificial heart system.
    Snyder AJ; Rosenberg G; Weiss WJ; Ford SK; Nazarian RA; Hicks DL; Marlotte JA; Kawaguchi O; Prophet GA; Sapirstein JS
    ASAIO J; 1993; 39(3):M177-84. PubMed ID: 8268524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface of data transmission for a transcutaneous communication system using the human body as transmission medium.
    Okamoto E; Kato Y; Seino K; Mitamura Y
    J Artif Organs; 2012 Mar; 15(1):99-103. PubMed ID: 21858693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single-chip signal processing and telemetry engine for an implantable 96-channel neural data acquisition system.
    Rizk M; Obeid I; Callender SH; Wolf PD
    J Neural Eng; 2007 Sep; 4(3):309-21. PubMed ID: 17873433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcutaneous optical telemetry system with infrared laser diode.
    Inoue K; Shiba K; Shu E; Koshiji K; Tsukahara K; Oh-umi T; Masuzawa T; Tatsumi E; Taenaka Y; Takano H
    ASAIO J; 1998; 44(6):841-4. PubMed ID: 9831095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assurance of energy efficiency and data security for ECG transmission in BASNs.
    Ma T; Shrestha PL; Hempel M; Peng D; Sharif H; Chen HH
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):1041-8. PubMed ID: 22231147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Review of wireless energy transmission system for total artificial heart].
    Zhang C; Yang M
    Zhongguo Yi Liao Qi Xie Za Zhi; 2009 Nov; 33(6):425-8. PubMed ID: 20352915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.