These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22812524)

  • 1. gp78: a multifaceted ubiquitin ligase that integrates a unique protein degradation pathway from the endoplasmic reticulum.
    Chen Z; Du S; Fang S
    Curr Protein Pept Sci; 2012 Aug; 13(5):414-24. PubMed ID: 22812524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. gp78 functions downstream of Hrd1 to promote degradation of misfolded proteins of the endoplasmic reticulum.
    Zhang T; Xu Y; Liu Y; Ye Y
    Mol Biol Cell; 2015 Dec; 26(24):4438-50. PubMed ID: 26424800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of a novel p97/valosin-containing protein-interacting motif of gp78 in endoplasmic reticulum-associated degradation.
    Ballar P; Shen Y; Yang H; Fang S
    J Biol Chem; 2006 Nov; 281(46):35359-68. PubMed ID: 16987818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different p97/VCP complexes function in retrotranslocation step of mammalian ER-associated degradation (ERAD).
    Ballar P; Pabuccuoglu A; Kose FA
    Int J Biochem Cell Biol; 2011 Apr; 43(4):613-21. PubMed ID: 21199683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of ER-associated degradation via p97/VCP-interacting motif.
    Ballar P; Fang S
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):818-22. PubMed ID: 18793143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of SVIP as an endogenous inhibitor of endoplasmic reticulum-associated degradation.
    Ballar P; Zhong Y; Nagahama M; Tagaya M; Shen Y; Fang S
    J Biol Chem; 2007 Nov; 282(47):33908-14. PubMed ID: 17872946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation.
    Zhong X; Shen Y; Ballar P; Apostolou A; Agami R; Fang S
    J Biol Chem; 2004 Oct; 279(44):45676-84. PubMed ID: 15331598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peripheral endoplasmic reticulum localization of the Gp78 ubiquitin ligase activity.
    St-Pierre P; Dang T; Joshi B; Nabi IR
    J Cell Sci; 2012 Apr; 125(Pt 7):1727-37. PubMed ID: 22328510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ubiquitin specific protease USP34 protects the ubiquitin ligase gp78 from proteasomal degradation.
    Wang H; Ju D; Kho DH; Yang H; Li L; Raz A; Sun F; Xie Y
    Biochem Biophys Res Commun; 2019 Feb; 509(2):348-353. PubMed ID: 30585151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A technique for delineating the unfolding requirements for substrate entry into retrotranslocons during endoplasmic reticulum-associated degradation.
    Shi J; Hu X; Guo Y; Wang L; Ji J; Li J; Zhang ZR
    J Biol Chem; 2019 Dec; 294(52):20084-20096. PubMed ID: 31748412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human liver cytochrome P450 3A4 ubiquitination: molecular recognition by UBC7-gp78 autocrine motility factor receptor and UbcH5a-CHIP-Hsc70-Hsp40 E2-E3 ubiquitin ligase complexes.
    Wang Y; Kim SM; Trnka MJ; Liu Y; Burlingame AL; Correia MA
    J Biol Chem; 2015 Feb; 290(6):3308-32. PubMed ID: 25451919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of diacylglycerol acyltransferase 2 protein stability by gp78-associated endoplasmic-reticulum-associated degradation.
    Choi K; Kim H; Kang H; Lee SY; Lee SJ; Back SH; Lee SH; Kim MS; Lee JE; Park JY; Kim J; Kim S; Song JH; Choi Y; Lee S; Lee HJ; Kim JH; Cho S
    FEBS J; 2014 Jul; 281(13):3048-60. PubMed ID: 24820123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multisite phosphorylation of human liver cytochrome P450 3A4 enhances Its gp78- and CHIP-mediated ubiquitination: a pivotal role of its Ser-478 residue in the gp78-catalyzed reaction.
    Wang Y; Guan S; Acharya P; Liu Y; Thirumaran RK; Brandman R; Schuetz EG; Burlingame AL; Correia MA
    Mol Cell Proteomics; 2012 Feb; 11(2):M111.010132. PubMed ID: 22101235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ufd1 is a cofactor of gp78 and plays a key role in cholesterol metabolism by regulating the stability of HMG-CoA reductase.
    Cao J; Wang J; Qi W; Miao HH; Wang J; Ge L; DeBose-Boyd RA; Tang JJ; Li BL; Song BL
    Cell Metab; 2007 Aug; 6(2):115-28. PubMed ID: 17681147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. USP13 antagonizes gp78 to maintain functionality of a chaperone in ER-associated degradation.
    Liu Y; Soetandyo N; Lee JG; Liu L; Xu Y; Clemons WM; Ye Y
    Elife; 2014; 3():e01369. PubMed ID: 24424410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calmodulin regulates MGRN1-GP78 interaction mediated ubiquitin proteasomal degradation system.
    Mukherjee R; Bhattacharya A; Sau A; Basu S; Chakrabarti S; Chakrabarti O
    FASEB J; 2019 Feb; 33(2):1927-1945. PubMed ID: 30230921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A ubiquitin-like domain recruits an oligomeric chaperone to a retrotranslocation complex in endoplasmic reticulum-associated degradation.
    Xu Y; Liu Y; Lee JG; Ye Y
    J Biol Chem; 2013 Jun; 288(25):18068-76. PubMed ID: 23665563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction via Functional Protein Stabilization of Hepatic Cytochromes P450 upon gp78/Autocrine Motility Factor Receptor (AMFR) Ubiquitin E3-Ligase Genetic Ablation in Mice: Therapeutic and Toxicological Relevance.
    Kwon D; Kim SM; Jacob P; Liu Y; Correia MA
    Mol Pharmacol; 2019 Nov; 96(5):641-654. PubMed ID: 31492698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p38 MAP kinase-dependent phosphorylation of the Gp78 E3 ubiquitin ligase controls ER-mitochondria association and mitochondria motility.
    Li L; Gao G; Shankar J; Joshi B; Foster LJ; Nabi IR
    Mol Biol Cell; 2015 Nov; 26(21):3828-40. PubMed ID: 26337390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ubiquitination regulates the assembly of VLDL in HepG2 cells and is the committing step of the apoB-100 ERAD pathway.
    Fisher EA; Khanna NA; McLeod RS
    J Lipid Res; 2011 Jun; 52(6):1170-1180. PubMed ID: 21421992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.