These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 22812620)
1. N-terminal region of CusB is sufficient for metal binding and metal transfer with the metallochaperone CusF. Mealman TD; Zhou M; Affandi T; Chacón KN; Aranguren ME; Blackburn NJ; Wysocki VH; McEvoy MM Biochemistry; 2012 Aug; 51(34):6767-75. PubMed ID: 22812620 [TBL] [Abstract][Full Text] [Related]
2. Models for the Metal Transfer Complex of the N-Terminal Region of CusB and CusF. Ucisik MN; Chakravorty DK; Merz KM Biochemistry; 2015 Jul; 54(27):4226-35. PubMed ID: 26079272 [TBL] [Abstract][Full Text] [Related]
3. Interactions between CusF and CusB identified by NMR spectroscopy and chemical cross-linking coupled to mass spectrometry. Mealman TD; Bagai I; Singh P; Goodlett DR; Rensing C; Zhou H; Wysocki VH; McEvoy MM Biochemistry; 2011 Apr; 50(13):2559-66. PubMed ID: 21323389 [TBL] [Abstract][Full Text] [Related]
4. EPR spectroscopy identifies Met and Lys residues that are essential for the interaction between the CusB N-terminal domain and metallochaperone CusF. Meir A; Natan A; Moskovitz Y; Ruthstein S Metallomics; 2015 Jul; 7(7):1163-72. PubMed ID: 25940871 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of the membrane fusion protein CusB from Escherichia coli. Su CC; Yang F; Long F; Reyon D; Routh MD; Kuo DW; Mokhtari AK; Van Ornam JD; Rabe KL; Hoy JA; Lee YJ; Rajashankar KR; Yu EW J Mol Biol; 2009 Oct; 393(2):342-55. PubMed ID: 19695261 [TBL] [Abstract][Full Text] [Related]
6. Structure and dynamics of the N-terminal domain of the Cu(I) binding protein CusB. Ucisik MN; Chakravorty DK; Merz KM Biochemistry; 2013 Oct; 52(39):6911-23. PubMed ID: 23988152 [TBL] [Abstract][Full Text] [Related]
7. EPR Spectroscopy Targets Structural Changes in the E. coli Membrane Fusion CusB upon Cu(I) Binding. Meir A; Abdelhai A; Moskovitz Y; Ruthstein S Biophys J; 2017 Jun; 112(12):2494-2502. PubMed ID: 28636907 [TBL] [Abstract][Full Text] [Related]
8. Structural mechanisms of heavy-metal extrusion by the Cus efflux system. Delmar JA; Su CC; Yu EW Biometals; 2013 Aug; 26(4):593-607. PubMed ID: 23657864 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli. Su CC; Long F; Zimmermann MT; Rajashankar KR; Jernigan RL; Yu EW Nature; 2011 Feb; 470(7335):558-62. PubMed ID: 21350490 [TBL] [Abstract][Full Text] [Related]
10. Insight into the cation-π interaction at the metal binding site of the copper metallochaperone CusF. Chakravorty DK; Wang B; Ucisik MN; Merz KM J Am Chem Soc; 2011 Dec; 133(48):19330-3. PubMed ID: 22029374 [TBL] [Abstract][Full Text] [Related]
11. Substrate-linked conformational change in the periplasmic component of a Cu(I)/Ag(I) efflux system. Bagai I; Liu W; Rensing C; Blackburn NJ; McEvoy MM J Biol Chem; 2007 Dec; 282(49):35695-702. PubMed ID: 17893146 [TBL] [Abstract][Full Text] [Related]
12. Crystallization and preliminary X-ray crystallographic analysis of Escherichia coli CusB. Xu Y; Yun BY; Sim SH; Lee K; Ha NC Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Jul; 65(Pt 7):743-5. PubMed ID: 19574656 [TBL] [Abstract][Full Text] [Related]
13. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins. Chacón KN; Mealman TD; McEvoy MM; Blackburn NJ Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15373-8. PubMed ID: 25313055 [TBL] [Abstract][Full Text] [Related]
14. Charged amino acids (R83, E567, D617, E625, R669, and K678) of CusA are required for metal ion transport in the Cus efflux system. Su CC; Long F; Lei HT; Bolla JR; Do SV; Rajashankar KR; Yu EW J Mol Biol; 2012 Sep; 422(3):429-41. PubMed ID: 22683351 [TBL] [Abstract][Full Text] [Related]
15. Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport. Long F; Su CC; Zimmermann MT; Boyken SE; Rajashankar KR; Jernigan RL; Yu EW Nature; 2010 Sep; 467(7314):484-8. PubMed ID: 20865003 [TBL] [Abstract][Full Text] [Related]
16. The Cus efflux system removes toxic ions via a methionine shuttle. Su CC; Long F; Yu EW Protein Sci; 2011 Jan; 20(1):6-18. PubMed ID: 20981744 [TBL] [Abstract][Full Text] [Related]
17. Metal export by CusCFBA, the periplasmic Cu(I)/Ag(I) transport system of Escherichia coli. Mealman TD; Blackburn NJ; McEvoy MM Curr Top Membr; 2012; 69():163-96. PubMed ID: 23046651 [TBL] [Abstract][Full Text] [Related]
18. Periplasmic domain of CusA in an Escherichia coli Cu+/Ag+ transporter has metal binding sites. Yun BY; Xu Y; Piao S; Kim N; Yoon JH; Cho HS; Lee K; Ha NC J Microbiol; 2010 Dec; 48(6):829-35. PubMed ID: 21221942 [TBL] [Abstract][Full Text] [Related]
19. Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone. Bagai I; Rensing C; Blackburn NJ; McEvoy MM Biochemistry; 2008 Nov; 47(44):11408-14. PubMed ID: 18847219 [TBL] [Abstract][Full Text] [Related]
20. Heavy metal transport by the CusCFBA efflux system. Delmar JA; Su CC; Yu EW Protein Sci; 2015 Nov; 24(11):1720-36. PubMed ID: 26258953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]