These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 22812713)
21. The catalytic effect of Pt nanoparticles supported on silicon oxide nanowire. Kim JH; Woo HJ; Kim CK; Yoon CS Nanotechnology; 2009 Jun; 20(23):235306. PubMed ID: 19448290 [TBL] [Abstract][Full Text] [Related]
22. Charge redistribution in core-shell nanoparticles to promote oxygen reduction. Tang W; Henkelman G J Chem Phys; 2009 May; 130(19):194504. PubMed ID: 19466840 [TBL] [Abstract][Full Text] [Related]
23. Reversible structural transformation of FeO(x) nanostructures on Pt under cycling redox conditions and its effect on oxidation catalysis. Fu Q; Yao Y; Guo X; Wei M; Ning Y; Liu H; Yang F; Liu Z; Bao X Phys Chem Chem Phys; 2013 Sep; 15(35):14708-14. PubMed ID: 23900259 [TBL] [Abstract][Full Text] [Related]
24. CO oxidation activity of Pt, Zn and ZnPt nanocatalysts: a comparative study by in situ near-ambient pressure X-ray photoelectron spectroscopy. Naitabdi A; Boucly A; Rochet F; Fagiewicz R; Olivieri G; Bournel F; Benbalagh R; Sirotti F; Gallet JJ Nanoscale; 2018 Apr; 10(14):6566-6580. PubMed ID: 29577122 [TBL] [Abstract][Full Text] [Related]
25. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd-Pt core-shell nanowire catalysts for the oxygen reduction reaction. Koenigsmann C; Santulli AC; Gong K; Vukmirovic MB; Zhou WP; Sutter E; Wong SS; Adzic RR J Am Chem Soc; 2011 Jun; 133(25):9783-95. PubMed ID: 21644515 [TBL] [Abstract][Full Text] [Related]
26. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564 [TBL] [Abstract][Full Text] [Related]
27. Reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts revealed by an FeO(111)/Pt(111) inverse model catalyst. Xu L; Wu Z; Jin Y; Ma Y; Huang W Phys Chem Chem Phys; 2013 Aug; 15(29):12068-74. PubMed ID: 23576093 [TBL] [Abstract][Full Text] [Related]
28. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances. Kuai L; Geng B; Wang S; Sang Y Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952 [TBL] [Abstract][Full Text] [Related]
29. Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction: The promotional effect of the Au core. Zeng J; Yang J; Lee JY; Zhou W J Phys Chem B; 2006 Dec; 110(48):24606-11. PubMed ID: 17134221 [TBL] [Abstract][Full Text] [Related]
30. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates. Nakka L; Molinari JE; Wachs IE J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071 [TBL] [Abstract][Full Text] [Related]
31. CO oxidation at the perimeters of an FeO/Pt(111) interface and how water promotes the activity: a first-principles study. Gu XK; Ouyang R; Sun D; Su HY; Li WX ChemSusChem; 2012 May; 5(5):871-8. PubMed ID: 22162485 [TBL] [Abstract][Full Text] [Related]
32. One-pot facile synthesis of reusable tremella-like M1@M2@M1(OH)2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) three layers core-shell nanostructures as highly efficient catalysts. Liu Y; Fang Z; Kuai L; Geng B Nanoscale; 2014 Aug; 6(16):9791-7. PubMed ID: 25008373 [TBL] [Abstract][Full Text] [Related]
34. Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction. Mazumder V; Chi M; More KL; Sun S J Am Chem Soc; 2010 Jun; 132(23):7848-9. PubMed ID: 20496893 [TBL] [Abstract][Full Text] [Related]
35. Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles. Lee WR; Kim MG; Choi JR; Park JI; Ko SJ; Oh SJ; Cheon J J Am Chem Soc; 2005 Nov; 127(46):16090-7. PubMed ID: 16287295 [TBL] [Abstract][Full Text] [Related]
36. Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition. Weber MJ; Verheijen MA; Bol AA; Kessels WM Nanotechnology; 2015 Mar; 26(9):094002. PubMed ID: 25676208 [TBL] [Abstract][Full Text] [Related]
37. Double shelled hollow nanospheres with dual noble metal nanoparticle encapsulation for enhanced catalytic application. Liu B; Wang Q; Yu S; Zhao T; Han J; Jing P; Hu W; Liu L; Zhang J; Sun LD; Yan CH Nanoscale; 2013 Oct; 5(20):9747-57. PubMed ID: 23963505 [TBL] [Abstract][Full Text] [Related]
38. ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis. Zeng H; Cai W; Liu P; Xu X; Zhou H; Klingshirn C; Kalt H ACS Nano; 2008 Aug; 2(8):1661-70. PubMed ID: 19206370 [TBL] [Abstract][Full Text] [Related]
39. Silver coated platinum core-shell nanostructures on etched Si nanowires: atomic layer deposition (ALD) processing and application in SERS. Sivakov VA; Höflich K; Becker M; Berger A; Stelzner T; Elers KE; Pore V; Ritala M; Christiansen SH Chemphyschem; 2010 Jun; 11(9):1995-2000. PubMed ID: 20446286 [TBL] [Abstract][Full Text] [Related]
40. Carbon Monoxide Oxidation on Metal-Supported Monolayer Oxide Films: Establishing Which Interface is Active. Zhang K; Li L; Shaikhutdinov S; Freund HJ Angew Chem Int Ed Engl; 2018 Jan; 57(5):1261-1265. PubMed ID: 29235223 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]