These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22813355)

  • 1. Structure and composition of insulin fibril surfaces probed by TERS.
    Kurouski D; Deckert-Gaudig T; Deckert V; Lednev IK
    J Am Chem Soc; 2012 Aug; 134(32):13323-9. PubMed ID: 22813355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface characterization of insulin protofilaments and fibril polymorphs using tip-enhanced Raman spectroscopy (TERS).
    Kurouski D; Deckert-Gaudig T; Deckert V; Lednev IK
    Biophys J; 2014 Jan; 106(1):263-71. PubMed ID: 24411258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Organization of Insulin Fibrils Based on Polarized Raman Spectroscopy: Evaluation of Existing Models.
    Sereda V; Sawaya MR; Lednev IK
    J Am Chem Soc; 2015 Sep; 137(35):11312-20. PubMed ID: 26278047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism.
    VandenAkker CC; Schleeger M; Bruinen AL; Deckert-Gaudig T; Velikov KP; Heeren RM; Deckert V; Bonn M; Koenderink GH
    J Phys Chem B; 2016 Sep; 120(34):8809-17. PubMed ID: 27487391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Heterogeneity of the Molecular Structure of Individual hIAPP Amyloid Fibrils Revealed with Tip-Enhanced Raman Spectroscopy.
    vandenAkker CC; Deckert-Gaudig T; Schleeger M; Velikov KP; Deckert V; Bonn M; Koenderink GH
    Small; 2015 Sep; 11(33):4131-9. PubMed ID: 25952953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking of nanoscale structural variations on a single amyloid fibril with tip-enhanced Raman scattering.
    Deckert-Gaudig T; Kämmer E; Deckert V
    J Biophotonics; 2012 Mar; 5(3):215-9. PubMed ID: 22271749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially resolved spectroscopic differentiation of hydrophilic and hydrophobic domains on individual insulin amyloid fibrils.
    Deckert-Gaudig T; Kurouski D; Hedegaard MA; Singh P; Lednev IK; Deckert V
    Sci Rep; 2016 Sep; 6():33575. PubMed ID: 27650589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High resolution spectroscopy reveals fibrillation inhibition pathways of insulin.
    Deckert-Gaudig T; Deckert V
    Sci Rep; 2016 Dec; 6():39622. PubMed ID: 28008970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two Mechanisms of Tip Enhancement of Raman Scattering by Protein Aggregates.
    Sereda V; Lednev IK
    Appl Spectrosc; 2017 Jan; 71(1):118-128. PubMed ID: 27407009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disulfide bridges remain intact while native insulin converts into amyloid fibrils.
    Kurouski D; Washington J; Ozbil M; Prabhakar R; Shekhtman A; Lednev IK
    PLoS One; 2012; 7(6):e36989. PubMed ID: 22675475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic Evidence of Tertiary Structural Differences Between Insulin Molecules in Fibrils.
    Schack MM; Dahl K; Rades T; Groenning M; Carpenter JF
    J Pharm Sci; 2019 Sep; 108(9):2871-2879. PubMed ID: 31026447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Total Internal Reflection Tip-Enhanced Raman Spectroscopy of Tau Fibrils.
    Talaga D; Cooney GS; Ury-Thiery V; Fichou Y; Huang Y; Lecomte S; Bonhommeau S
    J Phys Chem B; 2022 Jul; 126(27):5024-5032. PubMed ID: 35766112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale Structural Organization of Insulin Fibril Polymorphs Revealed by Atomic Force Microscopy-Infrared Spectroscopy (AFM-IR).
    Rizevsky S; Kurouski D
    Chembiochem; 2020 Feb; 21(4):481-485. PubMed ID: 31299124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review.
    Kurouski D; Van Duyne RP; Lednev IK
    Analyst; 2015 Aug; 140(15):4967-80. PubMed ID: 26042229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular structures of amyloid and prion fibrils: consensus versus controversy.
    Tycko R; Wickner RB
    Acc Chem Res; 2013 Jul; 46(7):1487-96. PubMed ID: 23294335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and Tip-Enhanced Raman Scattering studies.
    Krasnoslobodtsev AV; Deckert-Gaudig T; Zhang Y; Deckert V; Lyubchenko YL
    Ultramicroscopy; 2016 Jun; 165():26-33. PubMed ID: 27060278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-dependent disintegration of insulin amyloid fibrils monitored with atomic force microscopy and surface-enhanced Raman spectroscopy.
    Darussalam EY; Peterfi O; Deckert-Gaudig T; Roussille L; Deckert V
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 256():119672. PubMed ID: 33852991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tip-Enhanced Raman Spectroscopy: A Tool for Nanoscale Chemical and Structural Characterization of Biomolecules.
    Bonhommeau S; Lecomte S
    Chemphyschem; 2018 Jan; 19(1):8-18. PubMed ID: 29106771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gallic acid, one of the components in many plant tissues, is a potential inhibitor for insulin amyloid fibril formation.
    Jayamani J; Shanmugam G
    Eur J Med Chem; 2014 Oct; 85():352-8. PubMed ID: 25105923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman optical activity study on insulin amyloid- and prefibril intermediate.
    Yamamoto S; Watarai H
    Chirality; 2012 Feb; 24(2):97-103. PubMed ID: 22180158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.