BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 22813746)

  • 1. FoxM1 regulates mammary luminal cell fate.
    Carr JR; Kiefer MM; Park HJ; Li J; Wang Z; Fontanarosa J; DeWaal D; Kopanja D; Benevolenskaya EV; Guzman G; Raychaudhuri P
    Cell Rep; 2012 Jun; 1(6):715-29. PubMed ID: 22813746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland.
    Kouros-Mehr H; Slorach EM; Sternlicht MD; Werb Z
    Cell; 2006 Dec; 127(5):1041-55. PubMed ID: 17129787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gata-3 negatively regulates the tumor-initiating capacity of mammary luminal progenitor cells and targets the putative tumor suppressor caspase-14.
    Asselin-Labat ML; Sutherland KD; Vaillant F; Gyorki DE; Wu D; Holroyd S; Breslin K; Ward T; Shi W; Bath ML; Deb S; Fox SB; Smyth GK; Lindeman GJ; Visvader JE
    Mol Cell Biol; 2011 Nov; 31(22):4609-22. PubMed ID: 21930782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tip30 controls differentiation of murine mammary luminal progenitor to estrogen receptor-positive luminal cell through regulating FoxA1 expression.
    Chen F; Li A; Gao S; Hollern D; Williams M; Liu F; VanSickle EA; Andrechek E; Zhang C; Yang C; Luo R; Xiao H
    Cell Death Dis; 2014 May; 5(5):e1242. PubMed ID: 24853420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional Repression by FoxM1 Suppresses Tumor Differentiation and Promotes Metastasis of Breast Cancer.
    Kopanja D; Chand V; O'Brien E; Mukhopadhyay NK; Zappia MP; Islam ABMMK; Frolov MV; Merrill BJ; Raychaudhuri P
    Cancer Res; 2022 Jul; 82(13):2458-2471. PubMed ID: 35583996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental biology: cell fate in the mammary gland.
    Tong Q; Hotamisligil GS
    Nature; 2007 Feb; 445(7129):724-6. PubMed ID: 17301782
    [No Abstract]   [Full Text] [Related]  

  • 7. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation.
    Asselin-Labat ML; Sutherland KD; Barker H; Thomas R; Shackleton M; Forrest NC; Hartley L; Robb L; Grosveld FG; van der Wees J; Lindeman GJ; Visvader JE
    Nat Cell Biol; 2007 Feb; 9(2):201-9. PubMed ID: 17187062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plk1 Regulates the Repressor Function of FoxM1b by inhibiting its Interaction with the Retinoblastoma Protein.
    Mukhopadhyay NK; Chand V; Pandey A; Kopanja D; Carr JR; Chen YJ; Liao X; Raychaudhuri P
    Sci Rep; 2017 Apr; 7():46017. PubMed ID: 28387346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FOXM1 induces a global methylation signature that mimics the cancer epigenome in head and neck squamous cell carcinoma.
    Teh MT; Gemenetzidis E; Patel D; Tariq R; Nadir A; Bahta AW; Waseem A; Hutchison IL
    PLoS One; 2012; 7(3):e34329. PubMed ID: 22461910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GATA-3 and the regulation of the mammary luminal cell fate.
    Kouros-Mehr H; Kim JW; Bechis SK; Werb Z
    Curr Opin Cell Biol; 2008 Apr; 20(2):164-70. PubMed ID: 18358709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiostrepton selectively targets breast cancer cells through inhibition of forkhead box M1 expression.
    Kwok JM; Myatt SS; Marson CM; Coombes RC; Constantinidou D; Lam EW
    Mol Cancer Ther; 2008 Jul; 7(7):2022-32. PubMed ID: 18645012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mammary glands exhibit molecular laterality and undergo left-right asymmetric ductal epithelial growth in MMTV-cNeu mice.
    Robichaux JP; Hallett RM; Fuseler JW; Hassell JA; Ramsdell AF
    Oncogene; 2015 Apr; 34(15):2003-10. PubMed ID: 24909172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PKCtheta promotes c-Rel-driven mammary tumorigenesis in mice and humans by repressing estrogen receptor alpha synthesis.
    Belguise K; Sonenshein GE
    J Clin Invest; 2007 Dec; 117(12):4009-21. PubMed ID: 18037997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Met signaling regulates growth, repopulating potential and basal cell-fate commitment of mammary luminal progenitors: implications for basal-like breast cancer.
    Gastaldi S; Sassi F; Accornero P; Torti D; Galimi F; Migliardi G; Molyneux G; Perera T; Comoglio PM; Boccaccio C; Smalley MJ; Bertotti A; Trusolino L
    Oncogene; 2013 Mar; 32(11):1428-40. PubMed ID: 22562252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem Cells and the Differentiation Hierarchy in Mammary Gland Development.
    Fu NY; Nolan E; Lindeman GJ; Visvader JE
    Physiol Rev; 2020 Apr; 100(2):489-523. PubMed ID: 31539305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FoxM1 promotes breast tumorigenesis by activating PDGF-A and forming a positive feedback loop with the PDGF/AKT signaling pathway.
    Yu G; Zhou A; Xue J; Huang C; Zhang X; Kang SH; Chiu WT; Tan C; Xie K; Wang J; Huang S
    Oncotarget; 2015 May; 6(13):11281-94. PubMed ID: 25869208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1.
    Caldwell SA; Jackson SR; Shahriari KS; Lynch TP; Sethi G; Walker S; Vosseller K; Reginato MJ
    Oncogene; 2010 May; 29(19):2831-42. PubMed ID: 20190804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LXRα-mediated downregulation of FOXM1 suppresses the proliferation of hepatocellular carcinoma cells.
    Hu C; Liu D; Zhang Y; Lou G; Huang G; Chen B; Shen X; Gao M; Gong W; Zhou P; Dai S; Zeng Y; He F
    Oncogene; 2014 May; 33(22):2888-97. PubMed ID: 23812424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditional knockout of N-Myc and STAT interactor disrupts normal mammary development and enhances metastatic ability of mammary tumors.
    Pruitt HC; Metge BJ; Weeks SE; Chen D; Wei S; Kesterson RA; Shevde LA; Samant RS
    Oncogene; 2018 Mar; 37(12):1610-1623. PubMed ID: 29326438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forkhead box M1 is regulated by heat shock factor 1 and promotes glioma cells survival under heat shock stress.
    Dai B; Gong A; Jing Z; Aldape KD; Kang SH; Sawaya R; Huang S
    J Biol Chem; 2013 Jan; 288(3):1634-42. PubMed ID: 23192351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.