These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 22813844)
21. Chromosomal rearrangements and karyotype evolution in carnivores revealed by chromosome painting. Nie W; Wang J; Su W; Wang D; Tanomtong A; Perelman PL; Graphodatsky AS; Yang F Heredity (Edinb); 2012 Jan; 108(1):17-27. PubMed ID: 22086079 [TBL] [Abstract][Full Text] [Related]
22. Comparative chromosome painting in Aotus reveals a highly derived evolution. Ruiz-Herrera A; García F; Aguilera M; Garcia M; Ponsà Fontanals M Am J Primatol; 2005 Jan; 65(1):73-85. PubMed ID: 15645457 [TBL] [Abstract][Full Text] [Related]
23. Application of molecular cytogenetics for chromosomal evolution of the Lemuriformes (Prosimians). Warter S; Hauwy M; Dutrillaux B; Rumpler Y Cytogenet Genome Res; 2005; 108(1-3):197-203. PubMed ID: 15545730 [TBL] [Abstract][Full Text] [Related]
24. Mapping genomic rearrangements in titi monkeys by chromosome flow sorting and multidirectional in-situ hybridization. Dumas F; Bigoni F; Stone G; Sineo L; Stanyon R Chromosome Res; 2005; 13(1):85-96. PubMed ID: 15791414 [TBL] [Abstract][Full Text] [Related]
25. Karyotypic relationships in Asiatic asses (kulan and kiang) as defined using horse chromosome arm-specific and region-specific probes. Musilova P; Kubickova S; Horin P; Vodicka R; Rubes J Chromosome Res; 2009; 17(6):783-90. PubMed ID: 19731053 [TBL] [Abstract][Full Text] [Related]
27. Retention of latent centromeres in the Mammalian genome. Ferreri GC; Liscinsky DM; Mack JA; Eldridge MD; O'Neill RJ J Hered; 2005; 96(3):217-24. PubMed ID: 15653556 [TBL] [Abstract][Full Text] [Related]
28. Origins of primate chromosomes - as delineated by Zoo-FISH and alignments of human and mouse draft genome sequences. Froenicke L Cytogenet Genome Res; 2005; 108(1-3):122-38. PubMed ID: 15545724 [TBL] [Abstract][Full Text] [Related]
30. Phylogeny of horse chromosome 5q in the genus Equus and centromere repositioning. Piras FM; Nergadze SG; Poletto V; Cerutti F; Ryder OA; Leeb T; Raimondi E; Giulotto E Cytogenet Genome Res; 2009; 126(1-2):165-72. PubMed ID: 20016166 [TBL] [Abstract][Full Text] [Related]
31. Towards the delineation of the ancestral eutherian genome organization: comparative genome maps of human and the African elephant (Loxodonta africana) generated by chromosome painting. Frönicke L; Wienberg J; Stone G; Adams L; Stanyon R Proc Biol Sci; 2003 Jul; 270(1522):1331-40. PubMed ID: 12965023 [TBL] [Abstract][Full Text] [Related]
32. Chromosomal evolution and phylogeny in the Nullicauda group (Chiroptera, Phyllostomidae): evidence from multidirectional chromosome painting. Gomes AJB; Nagamachi CY; Rodrigues LRR; Ferguson-Smith MA; Yang F; O'Brien PCM; Pieczarka JC BMC Evol Biol; 2018 Apr; 18(1):62. PubMed ID: 29699485 [TBL] [Abstract][Full Text] [Related]
33. Cytogenetics meets phylogenetics: a review of karyotype evolution in diprotodontian marsupials. Westerman M; Meredith RW; Springer MS J Hered; 2010; 101(6):690-702. PubMed ID: 20581108 [TBL] [Abstract][Full Text] [Related]
34. Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae). Mandáková T; Lysak MA Plant Cell; 2008 Oct; 20(10):2559-70. PubMed ID: 18836039 [TBL] [Abstract][Full Text] [Related]
35. A High-Resolution Comparative Chromosome Map of Cricetus cricetus and Peromyscus eremicus Reveals the Involvement of Constitutive Heterochromatin in Breakpoint Regions. Vieira-da-Silva A; Louzada S; Adega F; Chaves R Cytogenet Genome Res; 2015; 145(1):59-67. PubMed ID: 25999143 [TBL] [Abstract][Full Text] [Related]
36. Chromosome evolution in bats as revealed by FISH: the ongoing search for the ancestral chiropteran karyotype. Volleth M; Eick G Cytogenet Genome Res; 2012; 137(2-4):165-73. PubMed ID: 22678038 [TBL] [Abstract][Full Text] [Related]
37. Comparative chromosome painting defines the high rate of karyotype changes between pigs and bovids. Frönicke L; Wienberg J Mamm Genome; 2001 Jun; 12(6):442-9. PubMed ID: 11353391 [TBL] [Abstract][Full Text] [Related]
38. Reconstruction of ancestral karyotype illuminates chromosome evolution in the genus Cucumis. Zhao Q; Meng Y; Wang P; Qin X; Cheng C; Zhou J; Yu X; Li J; Lou Q; Jahn M; Chen J Plant J; 2021 Aug; 107(4):1243-1259. PubMed ID: 34160852 [TBL] [Abstract][Full Text] [Related]
39. Karyotype, evolution and phylogenetic reconstruction in Micronycterinae bats with implications for the ancestral karyotype of Phyllostomidae. Benathar TCM; Nagamachi CY; Rodrigues LRR; O'Brien PCM; Ferguson-Smith MA; Yang F; Pieczarka JC BMC Evol Biol; 2019 May; 19(1):98. PubMed ID: 31064342 [TBL] [Abstract][Full Text] [Related]
40. New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis). Chi J; Fu B; Nie W; Wang J; Graphodatsky AS; Yang F Cytogenet Genome Res; 2005; 108(4):310-6. PubMed ID: 15627750 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]