BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22814249)

  • 1. A proteomics study of auxin effects in Arabidopsis thaliana.
    Xing M; Xue H
    Acta Biochim Biophys Sin (Shanghai); 2012 Sep; 44(9):783-96. PubMed ID: 22814249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auxin-induced, SCF(TIR1)-mediated poly-ubiquitination marks AUX/IAA proteins for degradation.
    Maraschin Fdos S; Memelink J; Offringa R
    Plant J; 2009 Jul; 59(1):100-9. PubMed ID: 19309453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis of auxin-regulated genes of Arabidopsis thaliana.
    Huang YC; Chang YL; Hsu JJ; Chuang HW
    Gene; 2008 Sep; 420(2):118-24. PubMed ID: 18577427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auxin sensitivities of all Arabidopsis Aux/IAAs for degradation in the presence of every TIR1/AFB.
    Shimizu-Mitao Y; Kakimoto T
    Plant Cell Physiol; 2014 Aug; 55(8):1450-9. PubMed ID: 24880779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana.
    Pelagio-Flores R; Ortíz-Castro R; Méndez-Bravo A; Macías-Rodríguez L; López-Bucio J
    Plant Cell Physiol; 2011 Mar; 52(3):490-508. PubMed ID: 21252298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a novel putative zinc finger gene MIF1: involvement in multiple hormonal regulation of Arabidopsis development.
    Hu W; Ma H
    Plant J; 2006 Feb; 45(3):399-422. PubMed ID: 16412086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxin Induces Widespread Proteome Remodeling in Arabidopsis Seedlings.
    Clark NM; Shen Z; Briggs SP; Walley JW; Kelley DR
    Proteomics; 2019 Sep; 19(17):e1900199. PubMed ID: 31381813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis.
    Fukaki H; Nakao Y; Okushima Y; Theologis A; Tasaka M
    Plant J; 2005 Nov; 44(3):382-95. PubMed ID: 16236149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SIR1, an upstream component in auxin signaling identified by chemical genetics.
    Zhao Y; Dai X; Blackwell HE; Schreiber SL; Chory J
    Science; 2003 Aug; 301(5636):1107-10. PubMed ID: 12893885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers.
    Lewis DR; Negi S; Sukumar P; Muday GK
    Development; 2011 Aug; 138(16):3485-95. PubMed ID: 21771812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of HLS1 in sugar and auxin signaling in Arabidopsis leaves.
    Ohto MA; Hayashi S; Sawa S; Hashimoto-Ohta A; Nakamura K
    Plant Cell Physiol; 2006 Dec; 47(12):1603-11. PubMed ID: 17071622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth.
    Mouchel CF; Osmont KS; Hardtke CS
    Nature; 2006 Sep; 443(7110):458-61. PubMed ID: 17006513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A small acidic protein 1 (SMAP1) mediates responses of the Arabidopsis root to the synthetic auxin 2,4-dichlorophenoxyacetic acid.
    Rahman A; Nakasone A; Chhun T; Ooura C; Biswas KK; Uchimiya H; Tsurumi S; Baskin TI; Tanaka A; Oono Y
    Plant J; 2006 Sep; 47(5):788-801. PubMed ID: 16923017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strigolactone-regulated proteins revealed by iTRAQ-based quantitative proteomics in Arabidopsis.
    Li Z; Czarnecki O; Chourey K; Yang J; Tuskan GA; Hurst GB; Pan C; Chen JG
    J Proteome Res; 2014 Mar; 13(3):1359-72. PubMed ID: 24559214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IBR5, a dual-specificity phosphatase-like protein modulating auxin and abscisic acid responsiveness in Arabidopsis.
    Monroe-Augustus M; Zolman BK; Bartel B
    Plant Cell; 2003 Dec; 15(12):2979-91. PubMed ID: 14630970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of exogenous auxin and ethylene on the Arabidopsis root proteome.
    Slade WO; Ray WK; Williams PM; Winkel BS; Helm RF
    Phytochemistry; 2012 Dec; 84():18-23. PubMed ID: 22989740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct comparison of Arabidopsis gene expression reveals different responses to melatonin versus auxin.
    Zia SF; Berkowitz O; Bedon F; Whelan J; Franks AE; Plummer KM
    BMC Plant Biol; 2019 Dec; 19(1):567. PubMed ID: 31856719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness.
    Dreher KA; Brown J; Saw RE; Callis J
    Plant Cell; 2006 Mar; 18(3):699-714. PubMed ID: 16489122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics in deciphering the auxin commitment in the Arabidopsis thaliana root growth.
    Mattei B; Sabatini S; Schininà ME
    J Proteome Res; 2013 Nov; 12(11):4685-701. PubMed ID: 24032454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytochrome A Negatively Regulates the Shade Avoidance Response by Increasing Auxin/Indole Acidic Acid Protein Stability.
    Yang C; Xie F; Jiang Y; Li Z; Huang X; Li L
    Dev Cell; 2018 Jan; 44(1):29-41.e4. PubMed ID: 29275991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.