BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 22814432)

  • 21. In vitro and in vivo analysis of the interaction between RNA helicase A and HIV-1 RNA.
    Xing L; Niu M; Kleiman L
    J Virol; 2012 Dec; 86(24):13272-80. PubMed ID: 23015696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The RNA helicase DDX1 is involved in restricted HIV-1 Rev function in human astrocytes.
    Fang J; Acheampong E; Dave R; Wang F; Mukhtar M; Pomerantz RJ
    Virology; 2005 Jun; 336(2):299-307. PubMed ID: 15892970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human Norovirus NS3 Has RNA Helicase and Chaperoning Activities.
    Li TF; Hosmillo M; Schwanke H; Shu T; Wang Z; Yin L; Curry S; Goodfellow IG; Zhou X
    J Virol; 2018 Mar; 92(5):. PubMed ID: 29237842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Host Cellular RNA Helicases Regulate SARS-CoV-2 Infection.
    Ariumi Y
    J Virol; 2022 Mar; 96(6):e0000222. PubMed ID: 35107372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A DEAD box protein facilitates HIV-1 replication as a cellular co-factor of Rev.
    Fang J; Kubota S; Yang B; Zhou N; Zhang H; Godbout R; Pomerantz RJ
    Virology; 2004 Dec; 330(2):471-80. PubMed ID: 15567440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The QP509L and Q706L superfamily II RNA helicases of African swine fever virus are required for viral replication, having non-redundant activities.
    Freitas FB; Frouco G; Martins C; Ferreira F
    Emerg Microbes Infect; 2019; 8(1):291-302. PubMed ID: 30866783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential effect of CLK SR Kinases on HIV-1 gene expression: potential novel targets for therapy.
    Wong R; Balachandran A; Mao AY; Dobson W; Gray-Owen S; Cochrane A
    Retrovirology; 2011 Jun; 8():47. PubMed ID: 21682887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel host restriction factors implicated in HIV-1 replication.
    Ghimire D; Rai M; Gaur R
    J Gen Virol; 2018 Apr; 99(4):435-446. PubMed ID: 29465030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene therapy strategies to block HIV-1 replication by RNA interference.
    Herrera-Carrillo E; Berkhout B
    Adv Exp Med Biol; 2015; 848():71-95. PubMed ID: 25757616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CpG Dinucleotides Inhibit HIV-1 Replication through Zinc Finger Antiviral Protein (ZAP)-Dependent and -Independent Mechanisms.
    Ficarelli M; Antzin-Anduetza I; Hugh-White R; Firth AE; Sertkaya H; Wilson H; Neil SJD; Schulz R; Swanson CM
    J Virol; 2020 Feb; 94(6):. PubMed ID: 31748389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Are microRNAs Important Players in HIV-1 Infection? An Update.
    Balasubramaniam M; Pandhare J; Dash C
    Viruses; 2018 Mar; 10(3):. PubMed ID: 29510515
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HIV-1 Vpr Reprograms CLR4
    Yan J; Shun MC; Hao C; Zhang Y; Qian J; Hrecka K; DeLucia M; Monnie C; Ahn J; Skowronski J
    mBio; 2018 Oct; 9(5):. PubMed ID: 30352932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel cellular RNA helicase, RH116, differentially regulates cell growth, programmed cell death and human immunodeficiency virus type 1 replication.
    Cocude C; Truong MJ; Billaut-Mulot O; Delsart V; Darcissac E; Capron A; Mouton Y; Bahr GM
    J Gen Virol; 2003 Dec; 84(Pt 12):3215-3225. PubMed ID: 14645903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HIV-1 induced nuclear factor I-B (NF-IB) expression negatively regulates HIV-1 replication through interaction with the long terminal repeat region.
    Vemula SV; Veerasamy R; Ragupathy V; Biswas S; Devadas K; Hewlett I
    Viruses; 2015 Feb; 7(2):543-58. PubMed ID: 25664610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA-dependent protein kinase interacts functionally with the RNA polymerase II complex recruited at the human immunodeficiency virus (HIV) long terminal repeat and plays an important role in HIV gene expression.
    Tyagi S; Ochem A; Tyagi M
    J Gen Virol; 2011 Jul; 92(Pt 7):1710-1720. PubMed ID: 21450944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative Temporal Viromics of an Inducible HIV-1 Model Yields Insight to Global Host Targets and Phospho-Dynamics Associated with Protein Vpr.
    Lapek JD; Lewinski MK; Wozniak JM; Guatelli J; Gonzalez DJ
    Mol Cell Proteomics; 2017 Aug; 16(8):1447-1461. PubMed ID: 28606917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interferon-induced exonuclease ISG20 exhibits an antiviral activity against human immunodeficiency virus type 1.
    Espert L; Degols G; Lin YL; Vincent T; Benkirane M; Mechti N
    J Gen Virol; 2005 Aug; 86(Pt 8):2221-2229. PubMed ID: 16033969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HIV-1 Replication Benefits from the RNA Epitranscriptomic Code.
    Kong W; Rivera-Serrano EE; Neidleman JA; Zhu J
    J Mol Biol; 2019 Dec; 431(24):5032-5038. PubMed ID: 31626810
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A role for RNA helicase A in post-transcriptional regulation of HIV type 1.
    Li J; Tang H; Mullen TM; Westberg C; Reddy TR; Rose DW; Wong-Staal F
    Proc Natl Acad Sci U S A; 1999 Jan; 96(2):709-14. PubMed ID: 9892698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual role of the chromatin-binding factor PHF13 in the pre- and post-integration phases of HIV-1 replication.
    Hofmann S; Dehn S; Businger R; Bolduan S; Schneider M; Debyser Z; Brack-Werner R; Schindler M
    Open Biol; 2017 Oct; 7(10):. PubMed ID: 29021215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.