BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22814437)

  • 1. Replacement of huntingtin exon 1 by trans-splicing.
    Rindt H; Yen PF; Thebeau CN; Peterson TS; Weisman GA; Lorson CL
    Cell Mol Life Sci; 2012 Dec; 69(24):4191-204. PubMed ID: 22814437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of
    Rindt H; Tom CM; Lorson CL; Mattis VB
    Front Neurosci; 2017; 11():544. PubMed ID: 29066943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease.
    Sathasivam K; Neueder A; Gipson TA; Landles C; Benjamin AC; Bondulich MK; Smith DL; Faull RL; Roos RA; Howland D; Detloff PJ; Housman DE; Bates GP
    Proc Natl Acad Sci U S A; 2013 Feb; 110(6):2366-70. PubMed ID: 23341618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5' exon replacement and repair by spliceosome-mediated RNA trans-splicing.
    Mansfield SG; Clark RH; Puttaraju M; Kole J; Cohn JA; Mitchell LG; Garcia-Blanco MA
    RNA; 2003 Oct; 9(10):1290-7. PubMed ID: 13130143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allele-specific silencing of mutant huntingtin in rodent brain and human stem cells.
    Drouet V; Ruiz M; Zala D; Feyeux M; Auregan G; Cambon K; Troquier L; Carpentier J; Aubert S; Merienne N; Bourgois-Rocha F; Hassig R; Rey M; Dufour N; Saudou F; Perrier AL; Hantraye P; Déglon N
    PLoS One; 2014; 9(6):e99341. PubMed ID: 24926995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair of CFTR mRNA by spliceosome-mediated RNA trans-splicing.
    Mansfield SG; Kole J; Puttaraju M; Yang CC; Garcia-Blanco MA; Cohn JA; Mitchell LG
    Gene Ther; 2000 Nov; 7(22):1885-95. PubMed ID: 11127576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenovirus-mediated silencing of huntingtin expression by shRNA.
    Huang B; Kochanek S
    Hum Gene Ther; 2005 May; 16(5):618-26. PubMed ID: 15916486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extensive Expression Analysis of Htt Transcripts in Brain Regions from the zQ175 HD Mouse Model Using a QuantiGene Multiplex Assay.
    Papadopoulou AS; Gomez-Paredes C; Mason MA; Taxy BA; Howland D; Bates GP
    Sci Rep; 2019 Nov; 9(1):16137. PubMed ID: 31695145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberrantly spliced HTT, a new player in Huntington's disease pathogenesis.
    Gipson TA; Neueder A; Wexler NS; Bates GP; Housman D
    RNA Biol; 2013 Nov; 10(11):1647-52. PubMed ID: 24256709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased Steady-State Mutant Huntingtin mRNA in Huntington's Disease Brain.
    Liu W; Chaurette J; Pfister EL; Kennington LA; Chase KO; Bullock J; Vonsattel JP; Faull RL; Macdonald D; DiFiglia M; Zamore PD; Aronin N
    J Huntingtons Dis; 2013; 2(4):491-500. PubMed ID: 25062733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promiscuity of pre-mRNA spliceosome-mediated trans splicing: a problem for gene therapy?
    Kikumori T; Cote GJ; Gagel RF
    Hum Gene Ther; 2001 Jul; 12(11):1429-41. PubMed ID: 11485634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PRMT5- mediated symmetric arginine dimethylation is attenuated by mutant huntingtin and is impaired in Huntington's disease (HD).
    Ratovitski T; Arbez N; Stewart JC; Chighladze E; Ross CA
    Cell Cycle; 2015; 14(11):1716-29. PubMed ID: 25927346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fresh Look at Huntingtin mRNA Processing in Huntington's Disease.
    Romo L; Mohn ES; Aronin N
    J Huntingtons Dis; 2018; 7(2):101-108. PubMed ID: 29865084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of novel alternative splicing events in the huntingtin gene and assessment of the functional consequences using structural protein homology modelling.
    Hughes AC; Mort M; Elliston L; Thomas RM; Brooks SP; Dunnett SB; Jones L
    J Mol Biol; 2014 Apr; 426(7):1428-38. PubMed ID: 24389360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preventing formation of toxic N-terminal huntingtin fragments through antisense oligonucleotide-mediated protein modification.
    Evers MM; Tran HD; Zalachoras I; Meijer OC; den Dunnen JT; van Ommen GJ; Aartsma-Rus A; van Roon-Mom WM
    Nucleic Acid Ther; 2014 Feb; 24(1):4-12. PubMed ID: 24380395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aberrant splicing of mutant huntingtin in Huntington's disease knock-in pigs.
    Tong H; Yang T; Liu L; Li C; Sun Y; Jia Q; Qin Y; Chen L; Zhao X; Zhou G; Yan S; Li XJ; Li S
    Neurobiol Dis; 2023 Oct; 187():106291. PubMed ID: 37716514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An alternative splicing modulator decreases mutant HTT and improves the molecular fingerprint in Huntington's disease patient neurons.
    Krach F; Stemick J; Boerstler T; Weiss A; Lingos I; Reischl S; Meixner H; Ploetz S; Farrell M; Hehr U; Kohl Z; Winner B; Winkler J
    Nat Commun; 2022 Nov; 13(1):6797. PubMed ID: 36357392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A natural antisense transcript at the Huntington's disease repeat locus regulates HTT expression.
    Chung DW; Rudnicki DD; Yu L; Margolis RL
    Hum Mol Genet; 2011 Sep; 20(17):3467-77. PubMed ID: 21672921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-capacity adenoviral vector-mediated reduction of huntingtin aggregate load in vitro and in vivo.
    Huang B; Schiefer J; Sass C; Landwehrmeyer GB; Kosinski CM; Kochanek S
    Hum Gene Ther; 2007 Apr; 18(4):303-11. PubMed ID: 17472569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pathogenic mechanism in Huntington's disease involves small CAG-repeated RNAs with neurotoxic activity.
    Bañez-Coronel M; Porta S; Kagerbauer B; Mateu-Huertas E; Pantano L; Ferrer I; Guzmán M; Estivill X; Martí E
    PLoS Genet; 2012; 8(2):e1002481. PubMed ID: 22383888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.