These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22814473)

  • 21. Stability analysis of optofluidic transport on solid-core waveguiding structures.
    Yang AH; Erickson D
    Nanotechnology; 2008 Jan; 19(4):045704. PubMed ID: 21817521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flow-dependent optofluidic particle trapping and circulation.
    Blakely JT; Gordon R; Sinton D
    Lab Chip; 2008 Aug; 8(8):1350-6. PubMed ID: 18651078
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microlens-array-enabled on-chip optical trapping and sorting.
    Zhao X; Sun Y; Bu J; Zhu S; Yuan XC
    Appl Opt; 2011 Jan; 50(3):318-22. PubMed ID: 21263729
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconfigurable optical manipulation by phase change material waveguides.
    Zhang T; Mei S; Wang Q; Liu H; Lim CT; Teng J
    Nanoscale; 2017 May; 9(20):6895-6900. PubMed ID: 28498378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polarization and particle size dependence of radiative forces on small metallic particles in evanescent optical fields. Evidences for either repulsive or attractive gradient forces.
    Gaugiran S; Gétin S; Fedeli JM; Derouard J
    Opt Express; 2007 Jun; 15(13):8146-56. PubMed ID: 19547141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic sorting in an optical lattice.
    MacDonald MP; Spalding GC; Dholakia K
    Nature; 2003 Nov; 426(6965):421-4. PubMed ID: 14647376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards an integrated optical single aerosol particle lab.
    Horstmann M; Probst K; Fallnich C
    Lab Chip; 2012 Jan; 12(2):295-301. PubMed ID: 22105700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage.
    Ahluwalia BS; McCourt P; Oteiza A; Wilkinson JS; Huser TR; Hellesø OG
    Analyst; 2015 Jan; 140(1):223-9. PubMed ID: 25408950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping.
    Applegate RW; Squier J; Vestad T; Oakey J; Marr DW; Bado P; Dugan MA; Said AA
    Lab Chip; 2006 Mar; 6(3):422-6. PubMed ID: 16511626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal-insulator-metal waveguides for particle trapping and separation.
    Khan SA; Chang CM; Zaidi Z; Shin W; Shi Y; Ellerbee Bowden AK; Solgaard O
    Lab Chip; 2016 Jun; 16(12):2302-8. PubMed ID: 27216706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trapping-assisted sensing of particles and proteins using on-chip optical microcavities.
    Lin S; Crozier KB
    ACS Nano; 2013 Feb; 7(2):1725-30. PubMed ID: 23311448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polymer waveguide backplanes for optical sensor interfaces in microfluidics.
    Lee KS; Lee HL; Ram RJ
    Lab Chip; 2007 Nov; 7(11):1539-45. PubMed ID: 17960283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides.
    Dai D; Wang Z; Bauters JF; Tien MC; Heck MJ; Blumenthal DJ; Bowers JE
    Opt Express; 2011 Jul; 19(15):14130-6. PubMed ID: 21934775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controllable trapping and releasing of nanoparticles by a standing wave on optical waveguides.
    An R; Wang G; Ji W; Jiao W; Jiang M; Chang Y; Xu X; Zou N; Zhang X
    Opt Lett; 2018 Aug; 43(16):3901-3904. PubMed ID: 30106912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controllable transport of nanoparticles along waveguides by spin-orbit coupling of light.
    Zhang Z; Min C; Fu Y; Zhang Y; Liu W; Yuan X
    Opt Express; 2021 Feb; 29(4):6282-6292. PubMed ID: 33726153
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultra-small silicon waveguide coupler switch using gap-variable mechanism.
    Akihama Y; Kanamori Y; Hane K
    Opt Express; 2011 Nov; 19(24):23658-63. PubMed ID: 22109391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Waveguide trapping of hollow glass spheres.
    Ahluwalia BS; Løvhaugen P; Hellesø OG
    Opt Lett; 2011 Sep; 36(17):3347-9. PubMed ID: 21886206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical forces in silicon subwavelength-grating waveguides.
    Ma K; Han S; Zhang L; Shi Y; Dai D
    Opt Express; 2017 Dec; 25(25):30876-30884. PubMed ID: 29245767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical trapping and propulsion of red blood cells on waveguide surfaces.
    Ahluwalia BS; McCourt P; Huser T; Hellesø OG
    Opt Express; 2010 Sep; 18(20):21053-61. PubMed ID: 20941001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bose-Einstein condensation on a microelectronic chip.
    Hänsel W; Hommelhoff P; Hänsch TW; Reichel J
    Nature; 2001 Oct; 413(6855):498-501. PubMed ID: 11586353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.