These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 22814673)
1. Fusion and sorting of two parallel trains of droplets using a railroad-like channel network and guiding tracks. Xu L; Lee H; Panchapakesan R; Oh KW Lab Chip; 2012 Oct; 12(20):3936-42. PubMed ID: 22814673 [TBL] [Abstract][Full Text] [Related]
2. Parallel synchronization of two trains of droplets using a railroad-like channel network. Ahn B; Lee K; Lee H; Panchapakesan R; Oh KW Lab Chip; 2011 Dec; 11(23):3956-62. PubMed ID: 21993857 [TBL] [Abstract][Full Text] [Related]
8. Advanced microfluidic droplet manipulation based on piezoelectric actuation. Shemesh J; Bransky A; Khoury M; Levenberg S Biomed Microdevices; 2010 Oct; 12(5):907-14. PubMed ID: 20559875 [TBL] [Abstract][Full Text] [Related]
9. Fast on-demand droplet fusion using transient cavitation bubbles. Li ZG; Ando K; Yu JQ; Liu AQ; Zhang JB; Ohl CD Lab Chip; 2011 Jun; 11(11):1879-85. PubMed ID: 21487578 [TBL] [Abstract][Full Text] [Related]
10. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion. Mazutis L; Baret JC; Griffiths AD Lab Chip; 2009 Sep; 9(18):2665-72. PubMed ID: 19704982 [TBL] [Abstract][Full Text] [Related]
11. A microfluidic droplet generator based on a piezoelectric actuator. Bransky A; Korin N; Khoury M; Levenberg S Lab Chip; 2009 Feb; 9(4):516-20. PubMed ID: 19190786 [TBL] [Abstract][Full Text] [Related]
12. Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays. Fradet E; McDougall C; Abbyad P; Dangla R; McGloin D; Baroud CN Lab Chip; 2011 Dec; 11(24):4228-34. PubMed ID: 22045291 [TBL] [Abstract][Full Text] [Related]
13. Passive droplet sorting using viscoelastic flow focusing. Hatch AC; Patel A; Beer NR; Lee AP Lab Chip; 2013 Apr; 13(7):1308-15. PubMed ID: 23380996 [TBL] [Abstract][Full Text] [Related]
14. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Tan YC; Fisher JS; Lee AI; Cristini V; Lee AP Lab Chip; 2004 Aug; 4(4):292-8. PubMed ID: 15269794 [TBL] [Abstract][Full Text] [Related]
15. Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme. Mazutis L; Baret JC; Treacy P; Skhiri Y; Araghi AF; Ryckelynck M; Taly V; Griffiths AD Lab Chip; 2009 Oct; 9(20):2902-8. PubMed ID: 19789742 [TBL] [Abstract][Full Text] [Related]
16. A droplet-to-digital (D2D) microfluidic device for single cell assays. Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549 [TBL] [Abstract][Full Text] [Related]
17. Droplet sorting based on the number of encapsulated particles using a solenoid valve. Cao Z; Chen F; Bao N; He H; Xu P; Jana S; Jung S; Lian H; Lu C Lab Chip; 2013 Jan; 13(1):171-8. PubMed ID: 23160342 [TBL] [Abstract][Full Text] [Related]
18. Microfluidic droplet trapping array as nanoliter reactors for gas-liquid chemical reaction. Zhang Q; Zeng S; Qin J; Lin B Electrophoresis; 2009 Sep; 30(18):3181-8. PubMed ID: 19705356 [TBL] [Abstract][Full Text] [Related]
19. Modeling of droplet traffic in interconnected microfluidic ladder devices. Song K; Zhang L; Hu G Electrophoresis; 2012 Feb; 33(3):411-8. PubMed ID: 22228275 [TBL] [Abstract][Full Text] [Related]
20. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel. Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]