BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22814902)

  • 1. Novel water-soluble substituted pyrrolo[3,2-d]pyrimidines: design, synthesis, and biological evaluation as antitubulin antitumor agents.
    Gangjee A; Pavana RK; Li W; Hamel E; Westbrook C; Mooberry SL
    Pharm Res; 2012 Nov; 29(11):3033-9. PubMed ID: 22814902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and discovery of water-soluble microtubule targeting agents that bind to the colchicine site on tubulin and circumvent Pgp mediated resistance.
    Gangjee A; Zhao Y; Lin L; Raghavan S; Roberts EG; Risinger AL; Hamel E; Mooberry SL
    J Med Chem; 2010 Nov; 53(22):8116-28. PubMed ID: 20973488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sterically induced conformational restriction: Discovery and preclinical evaluation of novel pyrrolo[3,2-d]pyrimidines as microtubule targeting agents.
    Pavana RK; Shah K; Gentile T; Dybdal-Hargreaves NF; Risinger AL; Mooberry SL; Hamel E; Gangjee A
    Bioorg Med Chem; 2018 Nov; 26(20):5470-5478. PubMed ID: 30297118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery and preclinical evaluation of 7-benzyl-N-(substituted)-pyrrolo[3,2-d]pyrimidin-4-amines as single agents with microtubule targeting effects along with triple-acting angiokinase inhibition as antitumor agents.
    Pavana RK; Choudhary S; Bastian A; Ihnat MA; Bai R; Hamel E; Gangjee A
    Bioorg Med Chem; 2017 Jan; 25(2):545-556. PubMed ID: 27894589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple monocyclic pyrimidine analogs as microtubule targeting agents binding to the colchicine site.
    Choudhary S; Kaku K; Robles AJ; Hamel E; Mooberry SL; Gangjee A
    Bioorg Med Chem; 2023 Mar; 82():117217. PubMed ID: 36889150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, synthesis, and bioevaluation of pyrazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors targeting the colchicine binding site with potent anticancer activities.
    Li G; Wang Y; Li L; Ren Y; Deng X; Liu J; Wang W; Luo M; Liu S; Chen J
    Eur J Med Chem; 2020 Sep; 202():112519. PubMed ID: 32650183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of 5,7-disubstituted-4-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-amines as microtubule inhibitors.
    Gangjee A; Kurup S; Smith CD
    Bioorg Med Chem; 2013 Mar; 21(5):1180-9. PubMed ID: 23352482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel [1,2,4]triazolo[1,5-a]pyrimidine derivatives as potent antitubulin agents: Design, multicomponent synthesis and antiproliferative activities.
    Yang F; Yu LZ; Diao PC; Jian XE; Zhou MF; Jiang CS; You WW; Ma WF; Zhao PL
    Bioorg Chem; 2019 Nov; 92():103260. PubMed ID: 31525523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Design, Synthesis, and Biological Activities of Pyrrole-Based Carboxamides: The Novel Tubulin Inhibitors Targeting the Colchicine-Binding Site.
    Boichuk S; Galembikova A; Syuzov K; Dunaev P; Bikinieva F; Aukhadieva A; Zykova S; Igidov N; Gankova K; Novikova M; Kopnin P
    Molecules; 2021 Sep; 26(19):. PubMed ID: 34641324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-proliferative potential of triphenyl substituted pyrimidines against MDA-MB-231, HCT-116 and HT-29 cancer cell lines.
    Ranjan Dwivedi A; Kumar V; Kaur H; Kumar N; Prakash Yadav R; Poduri R; Baranwal S; Kumar V
    Bioorg Med Chem Lett; 2020 Oct; 30(20):127468. PubMed ID: 32768647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, synthesis and bioevaluation of 2,7-diaryl-pyrazolo[1,5-a]pyrimidines as tubulin polymerization inhibitors.
    Liu R; Zhang S; Huang M; Guo Z; Li L; Li M; Wu L; Guan Q; Zhang W
    Bioorg Chem; 2021 Oct; 115():105220. PubMed ID: 34352709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis, and biological evaluation of 2,6,7-substituted pyrrolo[2,3-d]pyrimidines as cyclin dependent kinase inhibitor in pancreatic cancer cells.
    Shi X; Quan Y; Wang Y; Wang Y; Li Y
    Bioorg Med Chem Lett; 2021 Feb; 33():127725. PubMed ID: 33316409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2-Amino-4-methyl-5-phenylethyl substituted-7-N-benzyl-pyrrolo[2,3-d]pyrimidines as novel antitumor antimitotic agents that also reverse tumor resistance.
    Gangjee A; Namjoshi OA; Keller SN; Smith CD
    Bioorg Med Chem; 2011 Jul; 19(14):4355-65. PubMed ID: 21680190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, Synthesis, and Biological Evaluation of 5,6,7,8-Tetrahydrobenzo[4,5]thieno[2,3-
    Islam F; Doshi A; Robles AJ; Quadery TM; Zhang X; Zhou X; Hamel E; Mooberry SL; Gangjee A
    Molecules; 2022 Jan; 27(1):. PubMed ID: 35011550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting dihydrofolate reductase: Design, synthesis and biological evaluation of novel 6-substituted pyrrolo[2,3-d]pyrimidines as nonclassical antifolates and as potential antitumor agents.
    Gao T; Zhang C; Shi X; Guo R; Zhang K; Gu J; Li L; Li S; Zheng Q; Cui M; Cui M; Gao X; Liu Y; Wang L
    Eur J Med Chem; 2019 Sep; 178():329-340. PubMed ID: 31200235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of pyrrolo[2,3-d]pyrimidine derivatives and their antiproliferative activity against melanoma cell line.
    Jung MH; Kim H; Choi WK; El-Gamal MI; Park JH; Yoo KH; Sim TB; Lee SH; Baek D; Hah JM; Cho JH; Oh CH
    Bioorg Med Chem Lett; 2009 Dec; 19(23):6538-43. PubMed ID: 19857963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and Biological Investigations for a Series of N-5 Substituted Pyrrolo[3,2-
    Cawrse BM; Robinson NM; Lee NC; Wilson GM; Seley-Radtke KL
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31340431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and in vitro antiproliferative activity of C5-benzyl substituted 2-amino-pyrrolo[2,3-d]pyrimidines as potent Hsp90 inhibitors.
    Lee JH; Shin SC; Seo SH; Seo YH; Jeong N; Kim CW; Kim EE; Keum G
    Bioorg Med Chem Lett; 2017 Jan; 27(2):237-241. PubMed ID: 27914802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CAP rigidification of MS-275 and chidamide leads to enhanced antiproliferative effects mediated through HDAC1, 2 and tubulin polymerization inhibition.
    Singh A; Chang TY; Kaur N; Hsu KC; Yen Y; Lin TE; Lai MJ; Lee SB; Liou JP
    Eur J Med Chem; 2021 Apr; 215():113169. PubMed ID: 33588178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel pyrazolo[4,3-d]pyrimidine microtubule targeting agents (MTAs): Synthesis, structure-activity relationship, in vitro and in vivo evaluation as antitumor agents.
    Islam F; Quadery TM; Bai R; Luckett-Chastain LR; Hamel E; Ihnat MA; Gangjee A
    Bioorg Med Chem Lett; 2021 Jun; 41():127923. PubMed ID: 33705908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.