These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22815071)

  • 1. Calcium and phosphatidylserine inhibit lipid electropore formation and reduce pore lifetime.
    Levine ZA; Vernier PT
    J Membr Biol; 2012 Oct; 245(10):599-610. PubMed ID: 22815071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation.
    Levine ZA; Vernier PT
    J Membr Biol; 2010 Jul; 236(1):27-36. PubMed ID: 20623350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electropore Formation in Mechanically Constrained Phospholipid Bilayers.
    Fernández ML; Risk MR; Vernier PT
    J Membr Biol; 2018 Apr; 251(2):237-245. PubMed ID: 29170842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale, electric field-driven water bridges in vacuum gaps and lipid bilayers.
    Ho MC; Levine ZA; Vernier PT
    J Membr Biol; 2013 Nov; 246(11):793-801. PubMed ID: 23644990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological Calcium Concentrations Slow Dynamics at the Lipid-Water Interface.
    Valentine ML; Cardenas AE; Elber R; Baiz CR
    Biophys J; 2018 Oct; 115(8):1541-1551. PubMed ID: 30269885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium binding and head group dipole angle in phosphatidylserine-phosphatidylcholine bilayers.
    Vernier PT; Ziegler MJ; Dimova R
    Langmuir; 2009 Jan; 25(2):1020-7. PubMed ID: 19063658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of Anionic Lipid Bilayers by Specific Interplay of Protons and Calcium Ions.
    Abhinav ; Jurkiewicz P; Hof M; Allolio C; Sýkora J
    Biomolecules; 2022 Dec; 12(12):. PubMed ID: 36551322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometrical Characterization of an Electropore from Water Positional Fluctuations.
    Marracino P; Castellani F; Vernier PT; Liberti M; Apollonio F
    J Membr Biol; 2017 Feb; 250(1):11-19. PubMed ID: 27435217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular basis of electroporation.
    Tieleman DP
    BMC Biochem; 2004 Jul; 5():10. PubMed ID: 15260890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroporation of Skin Stratum Corneum Lipid Bilayer and Molecular Mechanism of Drug Transport: A Molecular Dynamics Study.
    Gupta R; Rai B
    Langmuir; 2018 May; 34(20):5860-5870. PubMed ID: 29708340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terahertz Electric Field-Induced Membrane Electroporation by Molecular Dynamics Simulations.
    Tang J; Yin H; Ma J; Bo W; Yang Y; Xu J; Liu Y; Gong Y
    J Membr Biol; 2018 Dec; 251(5-6):681-693. PubMed ID: 30094474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations.
    Böckmann RA; de Groot BL; Kakorin S; Neumann E; Grubmüller H
    Biophys J; 2008 Aug; 95(4):1837-50. PubMed ID: 18469089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permeabilizing Phospholipid Bilayers with Non-normal Electric Fields.
    Castellani F; Teissié J; Vernier PT
    J Membr Biol; 2018 Apr; 251(2):229-236. PubMed ID: 29094194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular-level characterization of lipid membrane electroporation using linearly rising current.
    Kramar P; Delemotte L; Maček Lebar A; Kotulska M; Tarek M; Miklavčič D
    J Membr Biol; 2012 Oct; 245(10):651-9. PubMed ID: 22886207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of lipid electropores II: Comparison of continuum-level modeling of pore conductance to molecular dynamics simulations.
    Rems L; Tarek M; Casciola M; Miklavčič D
    Bioelectrochemistry; 2016 Dec; 112():112-24. PubMed ID: 27091314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface water dynamics and porating electric fields for phospholipid bilayers.
    Ziegler MJ; Vernier PT
    J Phys Chem B; 2008 Oct; 112(43):13588-96. PubMed ID: 18837540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers.
    Fernández ML; Marshall G; Sagués F; Reigada R
    J Phys Chem B; 2010 May; 114(20):6855-65. PubMed ID: 20429602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers.
    Vernier PT; Ziegler MJ
    J Phys Chem B; 2007 Nov; 111(45):12993-6. PubMed ID: 17949035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanopore formation and phosphatidylserine externalization in a phospholipid bilayer at high transmembrane potential.
    Vernier PT; Ziegler MJ; Sun Y; Chang WV; Gundersen MA; Tieleman DP
    J Am Chem Soc; 2006 May; 128(19):6288-9. PubMed ID: 16683772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dye Transport through Bilayers Agrees with Lipid Electropore Molecular Dynamics.
    Sözer EB; Haldar S; Blank PS; Castellani F; Vernier PT; Zimmerberg J
    Biophys J; 2020 Nov; 119(9):1724-1734. PubMed ID: 33096018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.