These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Calcium binding and head group dipole angle in phosphatidylserine-phosphatidylcholine bilayers. Vernier PT; Ziegler MJ; Dimova R Langmuir; 2009 Jan; 25(2):1020-7. PubMed ID: 19063658 [TBL] [Abstract][Full Text] [Related]
7. Modulation of Anionic Lipid Bilayers by Specific Interplay of Protons and Calcium Ions. Abhinav ; Jurkiewicz P; Hof M; Allolio C; Sýkora J Biomolecules; 2022 Dec; 12(12):. PubMed ID: 36551322 [TBL] [Abstract][Full Text] [Related]
8. Geometrical Characterization of an Electropore from Water Positional Fluctuations. Marracino P; Castellani F; Vernier PT; Liberti M; Apollonio F J Membr Biol; 2017 Feb; 250(1):11-19. PubMed ID: 27435217 [TBL] [Abstract][Full Text] [Related]
9. The molecular basis of electroporation. Tieleman DP BMC Biochem; 2004 Jul; 5():10. PubMed ID: 15260890 [TBL] [Abstract][Full Text] [Related]
10. Electroporation of Skin Stratum Corneum Lipid Bilayer and Molecular Mechanism of Drug Transport: A Molecular Dynamics Study. Gupta R; Rai B Langmuir; 2018 May; 34(20):5860-5870. PubMed ID: 29708340 [TBL] [Abstract][Full Text] [Related]
11. Terahertz Electric Field-Induced Membrane Electroporation by Molecular Dynamics Simulations. Tang J; Yin H; Ma J; Bo W; Yang Y; Xu J; Liu Y; Gong Y J Membr Biol; 2018 Dec; 251(5-6):681-693. PubMed ID: 30094474 [TBL] [Abstract][Full Text] [Related]
12. Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Böckmann RA; de Groot BL; Kakorin S; Neumann E; Grubmüller H Biophys J; 2008 Aug; 95(4):1837-50. PubMed ID: 18469089 [TBL] [Abstract][Full Text] [Related]
14. Molecular-level characterization of lipid membrane electroporation using linearly rising current. Kramar P; Delemotte L; Maček Lebar A; Kotulska M; Tarek M; Miklavčič D J Membr Biol; 2012 Oct; 245(10):651-9. PubMed ID: 22886207 [TBL] [Abstract][Full Text] [Related]
15. Properties of lipid electropores II: Comparison of continuum-level modeling of pore conductance to molecular dynamics simulations. Rems L; Tarek M; Casciola M; Miklavčič D Bioelectrochemistry; 2016 Dec; 112():112-24. PubMed ID: 27091314 [TBL] [Abstract][Full Text] [Related]
16. Interface water dynamics and porating electric fields for phospholipid bilayers. Ziegler MJ; Vernier PT J Phys Chem B; 2008 Oct; 112(43):13588-96. PubMed ID: 18837540 [TBL] [Abstract][Full Text] [Related]
17. Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. Fernández ML; Marshall G; Sagués F; Reigada R J Phys Chem B; 2010 May; 114(20):6855-65. PubMed ID: 20429602 [TBL] [Abstract][Full Text] [Related]
18. Electric-driven membrane poration: A rationale for water role in the kinetics of pore formation. Marracino P; Caramazza L; Montagna M; Ghahri R; D'Abramo M; Liberti M; Apollonio F Bioelectrochemistry; 2022 Feb; 143():107987. PubMed ID: 34794113 [TBL] [Abstract][Full Text] [Related]
19. Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. Vernier PT; Ziegler MJ J Phys Chem B; 2007 Nov; 111(45):12993-6. PubMed ID: 17949035 [TBL] [Abstract][Full Text] [Related]
20. Nanopore formation and phosphatidylserine externalization in a phospholipid bilayer at high transmembrane potential. Vernier PT; Ziegler MJ; Sun Y; Chang WV; Gundersen MA; Tieleman DP J Am Chem Soc; 2006 May; 128(19):6288-9. PubMed ID: 16683772 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]