These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Hyperforin--a key constituent of St. John's wort specifically activates TRPC6 channels. Leuner K; Kazanski V; Müller M; Essin K; Henke B; Gollasch M; Harteneck C; Müller WE FASEB J; 2007 Dec; 21(14):4101-11. PubMed ID: 17666455 [TBL] [Abstract][Full Text] [Related]
3. [Cellular and molecular effects of the antidepressant hyperforin on brain cells: Review of the literature]. Bouron A; Lorrain E Encephale; 2014 Apr; 40(2):108-13. PubMed ID: 23816060 [TBL] [Abstract][Full Text] [Related]
4. TRPC6 channel-mediated neurite outgrowth in PC12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI3K, and CAMKIV signaling. Heiser JH; Schuwald AM; Sillani G; Ye L; Müller WE; Leuner K J Neurochem; 2013 Nov; 127(3):303-13. PubMed ID: 23875811 [TBL] [Abstract][Full Text] [Related]
5. The TRPC6 channel activator hyperforin induces the release of zinc and calcium from mitochondria. Tu P; Gibon J; Bouron A J Neurochem; 2010 Jan; 112(1):204-13. PubMed ID: 19845832 [TBL] [Abstract][Full Text] [Related]
6. Protonophore properties of hyperforin are essential for its pharmacological activity. Sell TS; Belkacemi T; Flockerzi V; Beck A Sci Rep; 2014 Dec; 4():7500. PubMed ID: 25511254 [TBL] [Abstract][Full Text] [Related]
7. NMDA receptor-antagonistic properties of hyperforin, a constituent of St. John's Wort. Kumar V; Mdzinarishvili A; Kiewert C; Abbruscato T; Bickel U; van der Schyf CJ; Klein J J Pharmacol Sci; 2006 Sep; 102(1):47-54. PubMed ID: 16936454 [TBL] [Abstract][Full Text] [Related]
8. Stimulation of hippocampal acetylcholine release by hyperforin, a constituent of St. John's Wort. Kiewert C; Buchholzer ML; Hartmann J; Chatterjee SS; Klein J Neurosci Lett; 2004 Jul; 364(3):195-8. PubMed ID: 15196674 [TBL] [Abstract][Full Text] [Related]
9. Analysis of hyperforin (St. John's wort) action at TRPC6 channel leads to the development of a new class of antidepressant drugs. El Hamdaoui Y; Zheng F; Fritz N; Ye L; Tran MA; Schwickert K; Schirmeister T; Braeuning A; Lichtenstein D; Hellmich UA; Weikert D; Heinrich M; Treccani G; Schäfer MKE; Nowak G; Nürnberg B; Alzheimer C; Müller CP; Friedland K Mol Psychiatry; 2022 Dec; 27(12):5070-5085. PubMed ID: 36224261 [TBL] [Abstract][Full Text] [Related]
10. The antidepressant hyperforin increases the phosphorylation of CREB and the expression of TrkB in a tissue-specific manner. Gibon J; Deloulme JC; Chevallier T; Ladevèze E; Abrous DN; Bouron A Int J Neuropsychopharmacol; 2013 Feb; 16(1):189-98. PubMed ID: 22226089 [TBL] [Abstract][Full Text] [Related]
11. TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. Amaral MD; Pozzo-Miller L J Neurosci; 2007 May; 27(19):5179-89. PubMed ID: 17494704 [TBL] [Abstract][Full Text] [Related]
12. Cellular neurobiology of hyperforin. Bouron A Phytother Res; 2024 Feb; 38(2):636-645. PubMed ID: 37963759 [TBL] [Abstract][Full Text] [Related]
13. Hyperforin attenuates brain damage induced by transient middle cerebral artery occlusion (MCAO) in rats via inhibition of TRPC6 channels degradation. Lin Y; Zhang JC; Fu J; Chen F; Wang J; Wu ZL; Yuan SY J Cereb Blood Flow Metab; 2013 Feb; 33(2):253-62. PubMed ID: 23149561 [TBL] [Abstract][Full Text] [Related]
14. Simple 2,4-diacylphloroglucinols as classic transient receptor potential-6 activators--identification of a novel pharmacophore. Leuner K; Heiser JH; Derksen S; Mladenov MI; Fehske CJ; Schubert R; Gollasch M; Schneider G; Harteneck C; Chatterjee SS; Müller WE Mol Pharmacol; 2010 Mar; 77(3):368-77. PubMed ID: 20008516 [TBL] [Abstract][Full Text] [Related]
15. Hyperforin: To Be or Not to Be an Activator of TRPC(6). Friedland K; Harteneck C Rev Physiol Biochem Pharmacol; 2015; 169():1-24. PubMed ID: 26384487 [TBL] [Abstract][Full Text] [Related]
16. Role of hyperforin in the pharmacological activities of St. John's Wort. Zanoli P CNS Drug Rev; 2004; 10(3):203-18. PubMed ID: 15492771 [TBL] [Abstract][Full Text] [Related]
17. Store-depletion and hyperforin activate distinct types of Ca(2+)-conducting channels in cortical neurons. Gibon J; Tu P; Bouron A Cell Calcium; 2010 Jun; 47(6):538-43. PubMed ID: 20621761 [TBL] [Abstract][Full Text] [Related]
18. Modulation of oxidative stress and Ca(2+) mobilization through TRPM2 channels in rat dorsal root ganglion neuron by Hypericum perforatum. Nazıroğlu M; Çiğ B; Özgül C Neuroscience; 2014 Mar; 263():27-35. PubMed ID: 24434769 [TBL] [Abstract][Full Text] [Related]
19. BDNF induces calcium elevations associated with IBDNF, a nonselective cationic current mediated by TRPC channels. Amaral MD; Pozzo-Miller L J Neurophysiol; 2007 Oct; 98(4):2476-82. PubMed ID: 17699689 [TBL] [Abstract][Full Text] [Related]
20. Understanding drug interactions with St John's wort (Hypericum perforatum L.): impact of hyperforin content. Chrubasik-Hausmann S; Vlachojannis J; McLachlan AJ J Pharm Pharmacol; 2019 Jan; 71(1):129-138. PubMed ID: 29411879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]