These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22815402)

  • 21. Coding of stimulus frequency by latency in thalamic networks through the interplay of GABAB-mediated feedback and stimulus shape.
    Golomb D; Ahissar E; Kleinfeld D
    J Neurophysiol; 2006 Mar; 95(3):1735-50. PubMed ID: 16267113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The contribution of the principal and spinal trigeminal nuclei to the receptive field properties of thalamic VPM neurons in the rat.
    Friedberg MH; Lee SM; Ebner FF
    J Neurocytol; 2004 Jan; 33(1):75-85. PubMed ID: 15173633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatiotemporal structure of somatosensory responses of many-neuron ensembles in the rat ventral posterior medial nucleus of the thalamus.
    Nicolelis MA; Chapin JK
    J Neurosci; 1994 Jun; 14(6):3511-32. PubMed ID: 8207469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Balancing bilateral sensory activity: callosal processing modulates sensory transmission through the contralateral thalamus by altering the response threshold.
    Li L; Ebner FF
    Exp Brain Res; 2006 Jul; 172(3):397-415. PubMed ID: 16429268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impairment of the discrimination of the direction of single-whisker stimulation induced by the lemniscal pathway lesion.
    Narumi T; Nakamura S; Takashima I; Kakei S; Tsutsui K; Iijima T
    Neurosci Res; 2007 Apr; 57(4):579-86. PubMed ID: 17313984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systemically administered cocaine alters stimulus-evoked responses of thalamic somatosensory neurons to perithreshold vibrissae stimulation.
    Rutter JJ; Baumann MH; Waterhouse BD
    Brain Res; 1998 Jul; 798(1-2):7-17. PubMed ID: 9666059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat.
    Jacob V; Brasier DJ; Erchova I; Feldman D; Shulz DE
    J Neurosci; 2007 Feb; 27(6):1271-84. PubMed ID: 17287502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-dimensional sensory feature representation by trigeminal primary afferents.
    Bale MR; Davies K; Freeman OJ; Ince RA; Petersen RS
    J Neurosci; 2013 Jul; 33(29):12003-12. PubMed ID: 23864687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discrimination of vibrotactile stimuli in the rat whisker system: behavior and neurometrics.
    Gerdjikov TV; Bergner CG; Stüttgen MC; Waiblinger C; Schwarz C
    Neuron; 2010 Feb; 65(4):530-40. PubMed ID: 20188657
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Responses of rat trigeminal ganglion neurons to longitudinal whisker stimulation.
    Stüttgen MC; Kullmann S; Schwarz C
    J Neurophysiol; 2008 Oct; 100(4):1879-84. PubMed ID: 18684907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dorsal raphe nucleus stimulation modulates the response of layers IV and V barrel cortical neurons in rat.
    Sheibani V; Farazifard R
    Brain Res Bull; 2006 Feb; 68(6):430-5. PubMed ID: 16459198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal frequency of whisker movement. II. Laminar organization of cortical representations.
    Ahissar E; Sosnik R; Bagdasarian K; Haidarliu S
    J Neurophysiol; 2001 Jul; 86(1):354-67. PubMed ID: 11431516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of GABA-mediated inhibition in the rat ventral posterior medial thalamus. I. Assessment of receptive field changes following thalamic reticular nucleus lesions.
    Lee SM; Friedberg MH; Ebner FF
    J Neurophysiol; 1994 May; 71(5):1702-15. PubMed ID: 8064343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Representation of Stimulus Speed and Direction in Vibrissal-Sensitive Regions of the Trigeminal Nuclei: A Comparison of Single Unit and Population Responses.
    Kaloti AS; Johnson EC; Bresee CS; Naufel SN; Perich MG; Jones DL; Hartmann MJ
    PLoS One; 2016; 11(7):e0158399. PubMed ID: 27463524
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular mechanisms of suppressive interactions between somatosensory responses in vivo.
    Higley MJ; Contreras D
    J Neurophysiol; 2007 Jan; 97(1):647-58. PubMed ID: 17065248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-velocity stimulation evokes "dense" population response in layer 2/3 vibrissal cortex.
    Ranjbar-Slamloo Y; Arabzadeh E
    J Neurophysiol; 2017 Mar; 117(3):1218-1228. PubMed ID: 28003414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Whisker Vibrations and the Activity of Trigeminal Primary Afferents in Response to Airflow.
    Yu YSW; Bush NE; Hartmann MJZ
    J Neurosci; 2019 Jul; 39(30):5881-5896. PubMed ID: 31097620
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trial-to-trial variability in the responses of neurons carries information about stimulus location in the rat whisker thalamus.
    Scaglione A; Moxon KA; Aguilar J; Foffani G
    Proc Natl Acad Sci U S A; 2011 Sep; 108(36):14956-61. PubMed ID: 21873241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Parallel coding schemes of whisker velocity in the rat's somatosensory system.
    Lottem E; Gugig E; Azouz R
    J Neurophysiol; 2015 Mar; 113(6):1784-99. PubMed ID: 25552637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Difference in the functional significance between the lemniscal and paralemniscal pathways in the perception of direction of single-whisker stimulation examined by muscimol microinjection.
    Nakamura S; Narumi T; Tsutsui K; Iijima T
    Neurosci Res; 2009 Jul; 64(3):323-9. PubMed ID: 19376165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.