These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 22815496)

  • 1. Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks.
    Poil SS; Hardstone R; Mansvelder HD; Linkenkaer-Hansen K
    J Neurosci; 2012 Jul; 32(29):9817-23. PubMed ID: 22815496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Modularity Tunes Mesoscale Criticality in Biological Neuronal Networks.
    Okujeni S; Egert U
    J Neurosci; 2023 Apr; 43(14):2515-2526. PubMed ID: 36868860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Landau-Ginzburg theory of cortex dynamics: Scale-free avalanches emerge at the edge of synchronization.
    di Santo S; Villegas P; Burioni R; Muñoz MA
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1356-E1365. PubMed ID: 29378970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity of synaptic input connectivity regulates spike-based neuronal avalanches.
    Wu S; Zhang Y; Cui Y; Li H; Wang J; Guo L; Xia Y; Yao D; Xu P; Guo D
    Neural Netw; 2019 Feb; 110():91-103. PubMed ID: 30508808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband criticality of human brain network synchronization.
    Kitzbichler MG; Smith ML; Christensen SR; Bullmore E
    PLoS Comput Biol; 2009 Mar; 5(3):e1000314. PubMed ID: 19300473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws.
    Palva JM; Zhigalov A; Hirvonen J; Korhonen O; Linkenkaer-Hansen K; Palva S
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3585-90. PubMed ID: 23401536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Avalanches in a stochastic model of spiking neurons.
    Benayoun M; Cowan JD; van Drongelen W; Wallace E
    PLoS Comput Biol; 2010 Jul; 6(7):e1000846. PubMed ID: 20628615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deviations from Critical Dynamics in Interictal Epileptiform Activity.
    Arviv O; Medvedovsky M; Sheintuch L; Goldstein A; Shriki O
    J Neurosci; 2016 Nov; 36(48):12276-12292. PubMed ID: 27903734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical analyses support power law distributions found in neuronal avalanches.
    Klaus A; Yu S; Plenz D
    PLoS One; 2011; 6(5):e19779. PubMed ID: 21720544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons.
    Rubinov M; Sporns O; Thivierge JP; Breakspear M
    PLoS Comput Biol; 2011 Jun; 7(6):e1002038. PubMed ID: 21673863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical modeling of adaptive neural networks explains co-existence of avalanches and oscillations in resting human brain.
    Lombardi F; Pepić S; Shriki O; Tkačik G; De Martino D
    Nat Comput Sci; 2023 Mar; 3(3):254-263. PubMed ID: 38177880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mean-field behavior as a result of noisy local dynamics in self-organized criticality: neuroscience implications.
    Moosavi SA; Montakhab A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052139. PubMed ID: 25353771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive self-organization in a realistic neural network model.
    Meisel C; Gross T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061917. PubMed ID: 20365200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure.
    Li X; Small M
    Chaos; 2012 Jun; 22(2):023104. PubMed ID: 22757511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-range temporal correlations and scaling behavior in human brain oscillations.
    Linkenkaer-Hansen K; Nikouline VV; Palva JM; Ilmoniemi RJ
    J Neurosci; 2001 Feb; 21(4):1370-7. PubMed ID: 11160408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growing Critical: Self-Organized Criticality in a Developing Neural System.
    Kossio FYK; Goedeke S; van den Akker B; Ibarz B; Memmesheimer RM
    Phys Rev Lett; 2018 Aug; 121(5):058301. PubMed ID: 30118252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
    Pasquale V; Massobrio P; Bologna LL; Chiappalone M; Martinoia S
    Neuroscience; 2008 Jun; 153(4):1354-69. PubMed ID: 18448256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balance between excitation and inhibition controls the temporal organization of neuronal avalanches.
    Lombardi F; Herrmann HJ; Perrone-Capano C; Plenz D; de Arcangelis L
    Phys Rev Lett; 2012 Jun; 108(22):228703. PubMed ID: 23003665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical networks, power laws, and neuronal avalanches.
    Friedman EJ; Landsberg AS
    Chaos; 2013 Mar; 23(1):013135. PubMed ID: 23556972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological conservation law as an emerging functionality in dynamical neuronal networks.
    Podobnik B; Jusup M; Tiganj Z; Wang WX; Buldú JM; Stanley HE
    Proc Natl Acad Sci U S A; 2017 Nov; 114(45):11826-11831. PubMed ID: 29078286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.