These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22815503)

  • 1. Dissociable brain systems mediate vicarious learning of stimulus-response and action-outcome contingencies.
    Liljeholm M; Molloy CJ; O'Doherty JP
    J Neurosci; 2012 Jul; 32(29):9878-86. PubMed ID: 22815503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiating neural systems mediating the acquisition vs. expression of goal-directed and habitual behavioral control.
    Liljeholm M; Dunne S; O'Doherty JP
    Eur J Neurosci; 2015 May; 41(10):1358-71. PubMed ID: 25892332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the neural substrates of goal-directed learning in the human brain.
    Valentin VV; Dickinson A; O'Doherty JP
    J Neurosci; 2007 Apr; 27(15):4019-26. PubMed ID: 17428979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the associative content of brain structures involved in habitual and goal-directed actions in humans: a multivariate FMRI study.
    McNamee D; Liljeholm M; Zika O; O'Doherty JP
    J Neurosci; 2015 Mar; 35(9):3764-71. PubMed ID: 25740507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corticostriatal control of goal-directed action is impaired in schizophrenia.
    Morris RW; Quail S; Griffiths KR; Green MJ; Balleine BW
    Biol Psychiatry; 2015 Jan; 77(2):187-95. PubMed ID: 25062683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acquisition and performance of goal-directed instrumental actions depends on ERK signaling in distinct regions of dorsal striatum in rats.
    Shiflett MW; Brown RA; Balleine BW
    J Neurosci; 2010 Feb; 30(8):2951-9. PubMed ID: 20181592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociable substrates for body motion and physical experience in the human action observation network.
    Cross ES; Hamilton AF; Kraemer DJ; Kelley WM; Grafton ST
    Eur J Neurosci; 2009 Oct; 30(7):1383-92. PubMed ID: 19788567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing of action- but not stimulus-related prediction errors differs between active and observational feedback learning.
    Kobza S; Bellebaum C
    Neuropsychologia; 2015 Jan; 66():75-87. PubMed ID: 25446969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arbitrary associations between antecedents and actions.
    Wise SP; Murray EA
    Trends Neurosci; 2000 Jun; 23(6):271-6. PubMed ID: 10838597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vicarious neural processing of outcomes during observational learning.
    Monfardini E; Gazzola V; Boussaoud D; Brovelli A; Keysers C; Wicker B
    PLoS One; 2013; 8(9):e73879. PubMed ID: 24040104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in visual and sensory-motor resting-state functional connectivity support motor learning by observing.
    McGregor HR; Gribble PL
    J Neurophysiol; 2015 Jul; 114(1):677-88. PubMed ID: 25995349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct neural systems underlie learning visuomotor and spatial representations of motor skills.
    Parsons MW; Harrington DL; Rao SM
    Hum Brain Mapp; 2005 Mar; 24(3):229-47. PubMed ID: 15543554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human dorsal striatum encodes prediction errors during observational learning of instrumental actions.
    Cooper JC; Dunne S; Furey T; O'Doherty JP
    J Cogn Neurosci; 2012 Jan; 24(1):106-18. PubMed ID: 21812568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observing Action Sequences Elicits Sequence-Specific Neural Representations in Frontoparietal Brain Regions.
    Apšvalka D; Cross ES; Ramsey R
    J Neurosci; 2018 Nov; 38(47):10114-10128. PubMed ID: 30282731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The involvement of model-based but not model-free learning signals during observational reward learning in the absence of choice.
    Dunne S; D'Souza A; O'Doherty JP
    J Neurophysiol; 2016 Jun; 115(6):3195-203. PubMed ID: 27052578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive Routes to Action Learning: Layering Experience Shapes Engagement of the Action Observation Network.
    Kirsch LP; Cross ES
    Cereb Cortex; 2015 Dec; 25(12):4799-811. PubMed ID: 26209850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neural basis of integrating pre- and post-response information for goal-directed actions.
    Frimmel S; Wolfensteller U; Mohr H; Ruge H
    Neuropsychologia; 2016 Jan; 80():56-70. PubMed ID: 26522619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thalamic Control of Dorsomedial Striatum Regulates Internal State to Guide Goal-Directed Action Selection.
    Bradfield LA; Balleine BW
    J Neurosci; 2017 Mar; 37(13):3721-3733. PubMed ID: 28242795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural correlates of the divergence of instrumental probability distributions.
    Liljeholm M; Wang S; Zhang J; O'Doherty JP
    J Neurosci; 2013 Jul; 33(30):12519-27. PubMed ID: 23884955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural determinants of human goal-directed vs. habitual action control and their relation to trait motivation.
    Eryilmaz H; Rodriguez-Thompson A; Tanner AS; Giegold M; Huntington FC; Roffman JL
    Sci Rep; 2017 Jul; 7(1):6002. PubMed ID: 28729647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.