These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2281556)

  • 21. Test for kidney hemorrhage following exposure to intense, pulsed ultrasound.
    Carstensen EL; Hartman C; Child SZ; Cox CA; Mayer R; Schenk E
    Ultrasound Med Biol; 1990; 16(7):681-5. PubMed ID: 2281557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological effects of shock waves: effect of shock waves on the liver and gallbladder wall of dogs--administration rate dependence.
    Delius M; Jordan M; Liebich HG; Brendel W
    Ultrasound Med Biol; 1990; 16(5):459-66. PubMed ID: 2238252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Section 3--selected biological properties of tissues: potential determinants of susceptibility to ultrasound-induced bioeffects. American Institute of Ultrasound in Medicine.
    J Ultrasound Med; 2000 Feb; 19(2):85-96, 154-68. PubMed ID: 10680615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biological effects of shock waves: lung hemorrhage by shock waves in dogs--pressure dependence.
    Delius M; Enders G; Heine G; Stark J; Remberger K; Brendel W
    Ultrasound Med Biol; 1987 Feb; 13(2):61-7. PubMed ID: 3590361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thresholds for hemorrhages in mouse skin and intestine induced by lithotripter shock waves.
    Miller DL; Thomas RM
    Ultrasound Med Biol; 1995; 21(2):249-57. PubMed ID: 7571133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Remnants of Albunex nucleate acoustic cavitation.
    Dalecki D; Raeman CH; Child SZ; Penney DP; Carstensen EL
    Ultrasound Med Biol; 1997; 23(9):1405-12. PubMed ID: 9428139
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiologic and pathologic alterations associated with ultrasonically generated shock waves.
    Hill DE; McDougal WS; Stephens H; Fogo A; Koch MO
    J Urol; 1990 Dec; 144(6):1531-4. PubMed ID: 2231958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Morphological effects of pulsed ultrasound in the lung.
    Penney DP; Schenk EA; Maltby K; Hartman-Raeman C; Child SZ; Carstensen EL
    Ultrasound Med Biol; 1993; 19(2):127-35. PubMed ID: 8516959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrasonic heating of lung tissue.
    Hartman CL; Child SZ; Penney DP; Carstensen EL
    J Acoust Soc Am; 1992 Jan; 91(1):513-6. PubMed ID: 1737892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of pulse polarity and energy on ultrasound-induced lung hemorrhage in adult rats.
    Frizzell LA; Zachary JF; O'Brien WD
    J Acoust Soc Am; 2003 May; 113(5):2912-8. PubMed ID: 12765408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of mouse and rabbit lung damage exposure to 30 kHz ultrasound.
    O'Brien WD; Zachary JF
    Ultrasound Med Biol; 1994; 20(3):299-307. PubMed ID: 8059491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cardiopulmonary function in rats with lung hemorrhage induced by pulsed ultrasound exposure.
    Kramer JM; Waldrop TG; Frizzell LA; Zachary JF; O'Brien WD
    J Ultrasound Med; 2001 Nov; 20(11):1197-206. PubMed ID: 11758025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biological effects of shock waves: in vivo effect of high energy pulses on rabbit bone.
    Delius M; Draenert K; Al Diek Y; Draenert Y
    Ultrasound Med Biol; 1995; 21(9):1219-25. PubMed ID: 8849836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Timing of exposures in ultrasonic hemorrhage of murine lung.
    J Ultrasound Med; 1998 Jun; 17(6):409-10. PubMed ID: 9623483
    [No Abstract]   [Full Text] [Related]  

  • 35. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy.
    Wang JC; Zhou Y
    Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hemorrhage in murine fetuses exposed to pulsed ultrasound.
    Dalecki D; Child SZ; Raeman CH; Cox C
    Ultrasound Med Biol; 1999 Sep; 25(7):1139-44. PubMed ID: 10574345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of fluid properties and pulse amplitude on bubble dynamics in the field of a shock wave lithotripter.
    Choi MJ; Coleman AJ; Saunders JE
    Phys Med Biol; 1993 Nov; 38(11):1561-73. PubMed ID: 8272432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. I. Acoustic fields.
    Bailey MR; Blackstock DT; Cleveland RO; Crum LA
    J Acoust Soc Am; 1998 Oct; 104(4):2517-24. PubMed ID: 10491712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig.
    Evan AP; McAteer JA; Connors BA; Pishchalnikov YA; Handa RK; Blomgren P; Willis LR; Williams JC; Lingeman JE; Gao S
    BJU Int; 2008 Feb; 101(3):382-8. PubMed ID: 17922871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superthreshold behavior and threshold estimates of ultrasound-induced lung hemorrhage in adult rats: role of beamwidth.
    O'Brien WD; Simpson DG; Frizzell LA; Zachary JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1695-705. PubMed ID: 11800133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.