These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22815571)

  • 41. Pectin hydrolysis in cashew apple juice by Aspergillus aculeatus URM4953 polygalacturonase covalently-immobilized on calcium alginate beads: A kinetic and thermodynamic study.
    Silva JC; de França PRL; Converti A; Porto TS
    Int J Biol Macromol; 2019 Apr; 126():820-827. PubMed ID: 30593804
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immobilization of Paecilomyces variotii tannase and properties of the immobilized enzyme.
    Schons PF; Lopes FC; Battestin V; Macedo GA
    J Microencapsul; 2011; 28(3):211-9. PubMed ID: 21425946
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermostable Tannase from
    Shao Y; Zhang YH; Zhang F; Yang QM; Weng HF; Xiao Q; Xiao AF
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32093395
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Immobilization and characterization of tannase from a metagenomic library and its use for removal of tannins from green tea infusion.
    Yao J; Chen Q; Zhong G; Cao W; Yu A; Liu Y
    J Microbiol Biotechnol; 2014 Jan; 24(1):80-6. PubMed ID: 24150500
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Garcina cambogia leaf and seawater for tannase production by marine Aspergillus awamori BTMFW032 under slurry state fermentation.
    Beena SP; Basheer SM; Bhat SG; Chandrasekaran M
    Nat Prod Commun; 2011 Dec; 6(12):1933-8. PubMed ID: 22312743
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterisation of bare and tannase-loaded calcium alginate beads by microscopic, thermogravimetric, FTIR and XRD analyses.
    Larosa C; Salerno M; de Lima JS; Merijs Meri R; da Silva MF; de Carvalho LB; Converti A
    Int J Biol Macromol; 2018 Aug; 115():900-906. PubMed ID: 29704606
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Exploring the Degradation of Gallotannins Catalyzed by Tannase Produced by Aspergillus niger GH1 for Ellagic Acid Production in Submerged and Solid-State Fermentation.
    Chávez-González ML; Guyot S; Rodríguez-Herrera R; Prado-Barragán A; Aguilar CN
    Appl Biochem Biotechnol; 2018 Jun; 185(2):476-483. PubMed ID: 29181764
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: influence of glucose and tannic acid.
    Aguilar CN; Augur C; Favela-Torres E; Viniegra-González G
    J Ind Microbiol Biotechnol; 2001 May; 26(5):296-302. PubMed ID: 11494106
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stabilization and application of spray-dried tannase from
    Cavalcanti RMF; Martinez MLL; Oliveira WP; Guimarães LHS
    3 Biotech; 2020 Apr; 10(4):177. PubMed ID: 32226706
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetics of fungal extracellular alpha-amylase from Fusarium solani immobilized in calcium alginate beads.
    Kumar D; Muthukumar M; Garg N
    J Environ Biol; 2012 Nov; 33(6):1021-5. PubMed ID: 23741795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Valorization of faba bean peels for fungal tannase production and its application in coffee tannin removal.
    Mostafa HS
    Food Chem X; 2024 Oct; 23():101678. PubMed ID: 39211766
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gallic Acid Production with Mouldy Polyurethane Particles Obtained from Solid State Culture of Aspergillus niger GH1.
    Mata-Gómez M; Mussatto SI; Rodríguez R; Teixeira JA; Martinez JL; Hernandez A; Aguilar CN
    Appl Biochem Biotechnol; 2015 Jun; 176(4):1131-40. PubMed ID: 25920332
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Co-immobilization of pectinase and glucoamylase onto sodium aliginate/graphene oxide composite beads and its application in the preparation of pumpkin-hawthorn juice.
    Yang SQ; Dai XY; Wei XY; Zhu Q; Zhou T
    J Food Biochem; 2019 Mar; 43(3):e12741. PubMed ID: 31353557
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetic Characterization and Effect of Immobilized Thermostable β-Glucosidase in Alginate Gel Beads on Sugarcane Juice.
    Keerti ; Gupta A; Kumar V; Dubey A; Verma AK
    ISRN Biochem; 2014; 2014():178498. PubMed ID: 25969764
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Studies on immobilized cellobiase].
    Shen XL; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):236-9. PubMed ID: 15966329
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Removal and recovery of uranium (VI) from aqueous solutions by immobilized Aspergillus niger powder beads.
    Ding DX; Tan X; Hu N; Li GY; Wang YD; Tan Y
    Bioprocess Biosyst Eng; 2012 Nov; 35(9):1567-76. PubMed ID: 22580796
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Production of tannase through submerged fermentation of tannin-containing plant extracts by Bacillus licheniformis KBR6.
    Das Mohapatra PK; Mondal KC; Pati BR
    Pol J Microbiol; 2006; 55(4):297-301. PubMed ID: 17416066
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of agitation speed on tannase production and morphology of Aspergillus niger FETL FT3 in submerged fermentation.
    Darah I; Sumathi G; Jain K; Lim SH
    Appl Biochem Biotechnol; 2011 Dec; 165(7-8):1682-90. PubMed ID: 21947762
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Screening of tannin acyl hydrolase (E.C.3.1.1.20) producing tannery effluent fungal isolates using simple agar plate and SmF process.
    Murugan K; Saravanababu S; Arunachalam M
    Bioresour Technol; 2007 Mar; 98(4):946-9. PubMed ID: 16839759
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative study of the production of extracellular β-glucosidase by four different strains of Aspergillus using submerged fermentation.
    Alarid-García C; Escamilla-Silva EM
    Prep Biochem Biotechnol; 2017 Jul; 47(6):597-610. PubMed ID: 28631979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.