These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 22815760)

  • 1. Protein surface matching by combining local and global geometric information.
    Ellingson L; Zhang J
    PLoS One; 2012; 7(7):e40540. PubMed ID: 22815760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction.
    Hoffmann B; Zaslavskiy M; Vert JP; Stoven V
    BMC Bioinformatics; 2010 Feb; 11():99. PubMed ID: 20175916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A global optimization algorithm for protein surface alignment.
    Bertolazzi P; Guerra C; Liuzzi G
    BMC Bioinformatics; 2010 Sep; 11():488. PubMed ID: 20920230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha shape and Delaunay triangulation in studies of protein-related interactions.
    Zhou W; Yan H
    Brief Bioinform; 2014 Jan; 15(1):54-64. PubMed ID: 23193202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R; Kurbatova N; Thornton J
    Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting protein-ligand binding sites based on an improved geometric algorithm.
    He J; Wei DQ; Wang JF; Chou KC
    Protein Pept Lett; 2011 Oct; 18(10):997-1001. PubMed ID: 21592081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SuperStar: improved knowledge-based interaction fields for protein binding sites.
    Verdonk ML; Cole JC; Watson P; Gillet V; Willett P
    J Mol Biol; 2001 Mar; 307(3):841-59. PubMed ID: 11273705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand binding site detection by local structure alignment and its performance complementarity.
    Lee HS; Im W
    J Chem Inf Model; 2013 Sep; 53(9):2462-70. PubMed ID: 23957286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand binding site similarity identification based on chemical and geometric similarity.
    Tu H; Shi T
    Protein J; 2013 Jun; 32(5):373-85. PubMed ID: 23700221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria.
    Peters KP; Fauck J; Frömmel C
    J Mol Biol; 1996 Feb; 256(1):201-13. PubMed ID: 8609611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LS-align: an atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening.
    Hu J; Liu Z; Yu DJ; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2209-2218. PubMed ID: 29462237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms.
    Jian JW; Elumalai P; Pitti T; Wu CY; Tsai KC; Chang JY; Peng HP; Yang AS
    PLoS One; 2016; 11(8):e0160315. PubMed ID: 27513851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison and druggability prediction of protein-ligand binding sites from pharmacophore-annotated cavity shapes.
    Desaphy J; Azdimousa K; Kellenberger E; Rognan D
    J Chem Inf Model; 2012 Aug; 52(8):2287-99. PubMed ID: 22834646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards predicting Ca2+-binding sites with different coordination numbers in proteins with atomic resolution.
    Wang X; Kirberger M; Qiu F; Chen G; Yang JJ
    Proteins; 2009 Jun; 75(4):787-98. PubMed ID: 19003991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A robust and efficient algorithm for the shape description of protein structures and its application in predicting ligand binding sites.
    Xie L; Bourne PE
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S9. PubMed ID: 17570152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure.
    Capra JA; Laskowski RA; Thornton JM; Singh M; Funkhouser TA
    PLoS Comput Biol; 2009 Dec; 5(12):e1000585. PubMed ID: 19997483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding ligand prediction for proteins using partial matching of local surface patches.
    Sael L; Kihara D
    Int J Mol Sci; 2010; 11(12):5009-26. PubMed ID: 21614188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FunFOLDQA: a quality assessment tool for protein-ligand binding site residue predictions.
    Roche DB; Buenavista MT; McGuffin LJ
    PLoS One; 2012; 7(5):e38219. PubMed ID: 22666491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of protein biochemical functions by similarity search using the molecular surface database eF-site.
    Kinoshita K; Nakamura H
    Protein Sci; 2003 Aug; 12(8):1589-95. PubMed ID: 12876308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting protein-ligand binding site using support vector machine with protein properties.
    Wong GY; Leung FH; Ling SH
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(6):1517-29. PubMed ID: 24407309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.