BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 22815860)

  • 41. Root transcriptomes of two acidic soil adapted Indica rice genotypes suggest diverse and complex mechanism of low phosphorus tolerance.
    Tyagi W; Rai M
    Protoplasma; 2017 Mar; 254(2):725-736. PubMed ID: 27228993
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Heat Shock Proteins in Plant Protection from Oxidative Stress].
    Yurina NP
    Mol Biol (Mosk); 2023; 57(6):949-964. PubMed ID: 38062952
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress.
    Liu GT; Wang JF; Cramer G; Dai ZW; Duan W; Xu HG; Wu BH; Fan PG; Wang LJ; Li SH
    BMC Plant Biol; 2012 Sep; 12():174. PubMed ID: 23016701
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel transcriptional responses to heat revealed by turning up the heat at night.
    Grinevich DO; Desai JS; Stroup KP; Duan J; Slabaugh E; Doherty CJ
    Plant Mol Biol; 2019 Sep; 101(1-2):1-19. PubMed ID: 31062216
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Full-Length Transcriptome of Spartina alterniflora Reveals the Complexity of High Salt Tolerance in Monocotyledonous Halophyte.
    Ye W; Wang T; Wei W; Lou S; Lan F; Zhu S; Li Q; Ji G; Lin C; Wu X; Ma L
    Plant Cell Physiol; 2020 May; 61(5):882-896. PubMed ID: 32044993
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rice heterotrimeric G-protein gamma subunits (RGG1 and RGG2) are differentially regulated under abiotic stress.
    Yadav DK; Islam SM; Tuteja N
    Plant Signal Behav; 2012 Jul; 7(7):733-40. PubMed ID: 22751322
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.).
    Deng QW; Luo XD; Chen YL; Zhou Y; Zhang FT; Hu BL; Xie JK
    Biol Res; 2018 Mar; 51(1):7. PubMed ID: 29544529
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Convergence of the transcriptional responses to heat shock and singlet oxygen stresses.
    Dufour YS; Imam S; Koo BM; Green HA; Donohue TJ
    PLoS Genet; 2012 Sep; 8(9):e1002929. PubMed ID: 23028346
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Use of heat stress responsive gene expression levels for early selection of heat tolerant cabbage (Brassica oleracea L.).
    Park HJ; Jung WY; Lee SS; Song JH; Kwon SY; Kim H; Kim C; Ahn JC; Cho HS
    Int J Mol Sci; 2013 Jun; 14(6):11871-94. PubMed ID: 23736694
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expression of drought tolerance genes in tropical upland rice cultivars (Oryza sativa).
    Silveira RD; Abreu FR; Mamidi S; McClean PE; Vianello RP; Lanna AC; Carneiro NP; Brondani C
    Genet Mol Res; 2015 Jul; 14(3):8181-200. PubMed ID: 26345744
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Global expression profiling of low temperature induced genes in the chilling tolerant japonica rice Jumli Marshi.
    Chawade A; Lindlöf A; Olsson B; Olsson O
    PLoS One; 2013; 8(12):e81729. PubMed ID: 24349120
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ZINC-INDUCED FACILITATOR-LIKE family in plants: lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa) paralogs.
    Ricachenevsky FK; Sperotto RA; Menguer PK; Sperb ER; Lopes KL; Fett JP
    BMC Plant Biol; 2011 Jan; 11():20. PubMed ID: 21266036
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway.
    Chan Z; Wang Y; Cao M; Gong Y; Mu Z; Wang H; Hu Y; Deng X; He XJ; Zhu JK
    New Phytol; 2016 Mar; 209(4):1527-39. PubMed ID: 26522658
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transcriptome analysis of rice root responses to potassium deficiency.
    Ma TL; Wu WH; Wang Y
    BMC Plant Biol; 2012 Sep; 12():161. PubMed ID: 22963580
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.
    Filichkin SA; Breton G; Priest HD; Dharmawardhana P; Jaiswal P; Fox SE; Michael TP; Chory J; Kay SA; Mockler TC
    PLoS One; 2011; 6(6):e16907. PubMed ID: 21694767
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat.
    Muthusamy SK; Dalal M; Chinnusamy V; Bansal KC
    J Plant Physiol; 2017 Apr; 211():100-113. PubMed ID: 28178571
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sequence and functional analysis of MIR319 promoter homologs from Brassica juncea reveals regulatory diversification and altered expression under stress.
    Joshi GAN; Chauhan C; Das S
    Mol Genet Genomics; 2021 May; 296(3):731-749. PubMed ID: 33797588
    [TBL] [Abstract][Full Text] [Related]  

  • 58. OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor.
    Liu JG; Qin QL; Zhang Z; Peng RH; Xiong AS; Chen JM; Yao QH
    BMB Rep; 2009 Jan; 42(1):16-21. PubMed ID: 19192388
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A rice gene, OsPL, encoding a MYB family transcription factor confers anthocyanin synthesis, heat stress response and hormonal signaling.
    Akhter D; Qin R; Nath UK; Eshag J; Jin X; Shi C
    Gene; 2019 May; 699():62-72. PubMed ID: 30858135
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development.
    Singh A; Giri J; Kapoor S; Tyagi AK; Pandey GK
    BMC Genomics; 2010 Jul; 11():435. PubMed ID: 20637108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.