BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22816502)

  • 1. Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements.
    Vandegehuchte MW; Steppe K
    New Phytol; 2012 Oct; 196(1):306-317. PubMed ID: 22816502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving sap flux density measurements by correctly determining thermal diffusivity, differentiating between bound and unbound water.
    Vandegehuchte MW; Steppe K
    Tree Physiol; 2012 Jul; 32(7):930-42. PubMed ID: 22543477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A statistical method for estimating wood thermal diffusivity and probe geometry using in situ heat response curves from sap flow measurements.
    Chen X; Miller GR; Rubin Y; Baldocchi DD
    Tree Physiol; 2012 Dec; 32(12):1458-70. PubMed ID: 23135737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single-probe heat pulse method for estimating sap velocity in trees.
    López-Bernal Á; Testi L; Villalobos FJ
    New Phytol; 2017 Oct; 216(1):321-329. PubMed ID: 28722117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel, cyclic heat dissipation method for the correction of natural temperature gradients in sap flow measurements. Part 2. Laboratory validation.
    Reyes-Acosta JL; Vandegehuchte MW; Steppe K; Lubczynski MW
    Tree Physiol; 2012 Jul; 32(7):913-29. PubMed ID: 22659459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of the correct heat conduction-convection equation as basis for heat-pulse sap flow methods in anisotropic wood.
    Vandegehuchte MW; Steppe K
    J Exp Bot; 2012 May; 63(8):2833-9. PubMed ID: 22407648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of conduction versus convection in heat pulse sap flow methods.
    Forster MA
    Tree Physiol; 2020 May; 40(5):683-694. PubMed ID: 32031660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes.
    Wullschleger SD; Childs KW; King AW; Hanson PJ
    Tree Physiol; 2011 Jun; 31(6):669-79. PubMed ID: 21743059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of stem temperature changes on heat pulse sap flux density measurements.
    Vandegehuchte MW; Burgess SS; Downey A; Steppe K
    Tree Physiol; 2015 Apr; 35(4):346-53. PubMed ID: 25145698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sap-flux density measurement methods: working principles and applicability.
    Vandegehuchte MW; Steppe K
    Funct Plant Biol; 2013 Apr; 40(3):213-223. PubMed ID: 32481101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrigendum to: Sap-flux density measurement methods: working principles and applicability.
    Vandegehuchte MW; Steppe K
    Funct Plant Biol; 2013 Oct; 40(10):1088. PubMed ID: 32481176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An empirical study of the wound effect on sap flux density measured with thermal dissipation probes.
    Wiedemann A; Marañón-Jiménez S; Rebmann C; Herbst M; Cuntz M
    Tree Physiol; 2016 Dec; 36(12):1471-1484. PubMed ID: 27587487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray computed microtomography characterizes the wound effect that causes sap flow underestimation by thermal dissipation sensors.
    Marañón-Jiménez S; Van den Bulcke J; Piayda A; Van Acker J; Cuntz M; Rebmann C; Steppe K
    Tree Physiol; 2018 Feb; 38(2):287-301. PubMed ID: 28981912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating water use by sugar maple trees: considerations when using heat-pulse methods in trees with deep functional sapwood.
    Pausch RC; Grote EE; Dawson TE
    Tree Physiol; 2000 Mar; 20(4):217-227. PubMed ID: 12651458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.
    Gebauer T; Horna V; Leuschner C
    Tree Physiol; 2008 Dec; 28(12):1821-30. PubMed ID: 19193565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influences of environmental factors on the radial profile of sap flux density in Fagus crenata growing at different elevations in the Naeba Mountains, Japan.
    Kubota M; Tenhunen J; Zimmerman R; Schmidt M; Adiku S; Kakubari Y
    Tree Physiol; 2005 May; 25(5):545-56. PubMed ID: 15741147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A double-ratio method to measure fast, slow and reverse sap flows.
    Deng Z; Vice HK; Gilbert ME; Adams MA; Buckley TN
    Tree Physiol; 2021 Dec; 41(12):2438-2453. PubMed ID: 34100073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits.
    Köcher P; Horna V; Leuschner C
    Tree Physiol; 2013 Aug; 33(8):817-32. PubMed ID: 23999137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood.
    James SA; Clearwater MJ; Meinzer FC; Goldstein G
    Tree Physiol; 2002 Mar; 22(4):277-83. PubMed ID: 11874724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calibration of sap flow estimated by the compensation heat pulse method in olive, plum and orange trees: relationships with xylem anatomy.
    Fernández JE; Durán PJ; Palomo MJ; Diaz-Espejo A; Chamorro V; Girón IF
    Tree Physiol; 2006 Jun; 26(6):719-28. PubMed ID: 16510387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.