These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22816552)

  • 1. The role of automobiles for the future of aluminum recycling.
    Modaresi R; Müller DB
    Environ Sci Technol; 2012 Aug; 46(16):8587-94. PubMed ID: 22816552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term strategies for increased recycling of automotive aluminum and its alloying elements.
    Løvik AN; Modaresi R; Müller DB
    Environ Sci Technol; 2014 Apr; 48(8):4257-65. PubMed ID: 24655476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forecasting global aluminium flows to demonstrate the need for improved sorting and recycling methods.
    Van den Eynde S; Bracquené E; Diaz-Romero D; Zaplana I; Engelen B; Duflou JR; Peeters JR
    Waste Manag; 2022 Jan; 137():231-240. PubMed ID: 34801956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unearthing potentials for decarbonizing the U.S. aluminum cycle.
    Liu G; Bangs CE; Müller DB
    Environ Sci Technol; 2011 Nov; 45(22):9515-22. PubMed ID: 21970673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the global flow of aluminum: from liquid aluminum to end-use goods.
    Cullen JM; Allwood JM
    Environ Sci Technol; 2013 Apr; 47(7):3057-64. PubMed ID: 23438734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality- and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality.
    Nakamura S; Kondo Y; Matsubae K; Nakajima K; Tasaki T; Nagasaka T
    Environ Sci Technol; 2012 Sep; 46(17):9266-73. PubMed ID: 22876977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Value analysis of neodymium content in shredder feed: toward enabling the feasibility of rare earth magnet recycling.
    Bandara HM; Darcy JW; Apelian D; Emmert MH
    Environ Sci Technol; 2014 Jun; 48(12):6553-60. PubMed ID: 24934194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic material flow modeling: an effort to calibrate and validate aluminum stocks and flows in Austria.
    Buchner H; Laner D; Rechberger H; Fellner J
    Environ Sci Technol; 2015 May; 49(9):5546-54. PubMed ID: 25851493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. End-of-life passenger vehicles recycling decision system in China based on dynamic material flow analysis and life cycle assessment.
    Liu M; Chen X; Zhang M; Lv X; Wang H; Chen Z; Huang X; Zhang X; Zhang S
    Waste Manag; 2020 Nov; 117():81-92. PubMed ID: 32818811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Management status of end-of-life vehicles and development strategies of used automotive electronic control components recycling industry in China.
    Wang J; Chen M
    Waste Manag Res; 2012 Nov; 30(11):1198-207. PubMed ID: 22843351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable design for automotive products: dismantling and recycling of end-of-life vehicles.
    Tian J; Chen M
    Waste Manag; 2014 Feb; 34(2):458-67. PubMed ID: 24326159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward sustainable material usage: evaluating the importance of market motivated agency in modeling material flows.
    Gaustad G; Olivetti E; Kirchain R
    Environ Sci Technol; 2011 May; 45(9):4110-7. PubMed ID: 21438601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertia of Technology Stocks: A Technology-Explicit Model for the Transition toward a Low-Carbon Global Aluminum Cycle.
    Langhorst M; Billy RG; Schwotzer C; Kaiser F; Müller DB
    Environ Sci Technol; 2024 Jun; 58(22):9624-9635. PubMed ID: 38772914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forecasting model to assess the potential of secondary lead production from lead acid battery scrap.
    Machado Santos S; Cabral Neto J; Mendonça Silva M
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5782-5793. PubMed ID: 30613889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Economic and policy instrument analyses in support of the scrap tire recycling program in Taiwan.
    Chang NB
    J Environ Manage; 2008 Feb; 86(3):435-50. PubMed ID: 17276578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development and prospects of the end-of-life vehicle recycling system in Taiwan.
    Chen KC; Huang SH; Lian IW
    Waste Manag; 2010; 30(8-9):1661-9. PubMed ID: 20382516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interval linear programming model for long-term planning of vehicle recycling in the Republic of Serbia under uncertainty.
    Simic V; Dimitrijevic B
    Waste Manag Res; 2015 Feb; 33(2):114-29. PubMed ID: 25649401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation.
    Glöser S; Soulier M; Tercero Espinoza LA
    Environ Sci Technol; 2013 Jun; 47(12):6564-72. PubMed ID: 23725041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are scarce metals in cars functionally recycled?
    Andersson M; Ljunggren Söderman M; Sandén BA
    Waste Manag; 2017 Feb; 60():407-416. PubMed ID: 27395755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal Recycling of Steel Scrap and Alloying Elements: Input-Output based Linear Programming Method with Its Application to End-of-Life Vehicles in Japan.
    Ohno H; Matsubae K; Nakajima K; Kondo Y; Nakamura S; Fukushima Y; Nagasaka T
    Environ Sci Technol; 2017 Nov; 51(22):13086-13094. PubMed ID: 29111691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.