BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22816552)

  • 1. The role of automobiles for the future of aluminum recycling.
    Modaresi R; Müller DB
    Environ Sci Technol; 2012 Aug; 46(16):8587-94. PubMed ID: 22816552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term strategies for increased recycling of automotive aluminum and its alloying elements.
    Løvik AN; Modaresi R; Müller DB
    Environ Sci Technol; 2014 Apr; 48(8):4257-65. PubMed ID: 24655476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forecasting global aluminium flows to demonstrate the need for improved sorting and recycling methods.
    Van den Eynde S; Bracquené E; Diaz-Romero D; Zaplana I; Engelen B; Duflou JR; Peeters JR
    Waste Manag; 2022 Jan; 137():231-240. PubMed ID: 34801956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unearthing potentials for decarbonizing the U.S. aluminum cycle.
    Liu G; Bangs CE; Müller DB
    Environ Sci Technol; 2011 Nov; 45(22):9515-22. PubMed ID: 21970673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the global flow of aluminum: from liquid aluminum to end-use goods.
    Cullen JM; Allwood JM
    Environ Sci Technol; 2013 Apr; 47(7):3057-64. PubMed ID: 23438734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality- and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality.
    Nakamura S; Kondo Y; Matsubae K; Nakajima K; Tasaki T; Nagasaka T
    Environ Sci Technol; 2012 Sep; 46(17):9266-73. PubMed ID: 22876977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Value analysis of neodymium content in shredder feed: toward enabling the feasibility of rare earth magnet recycling.
    Bandara HM; Darcy JW; Apelian D; Emmert MH
    Environ Sci Technol; 2014 Jun; 48(12):6553-60. PubMed ID: 24934194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic material flow modeling: an effort to calibrate and validate aluminum stocks and flows in Austria.
    Buchner H; Laner D; Rechberger H; Fellner J
    Environ Sci Technol; 2015 May; 49(9):5546-54. PubMed ID: 25851493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. End-of-life passenger vehicles recycling decision system in China based on dynamic material flow analysis and life cycle assessment.
    Liu M; Chen X; Zhang M; Lv X; Wang H; Chen Z; Huang X; Zhang X; Zhang S
    Waste Manag; 2020 Nov; 117():81-92. PubMed ID: 32818811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Management status of end-of-life vehicles and development strategies of used automotive electronic control components recycling industry in China.
    Wang J; Chen M
    Waste Manag Res; 2012 Nov; 30(11):1198-207. PubMed ID: 22843351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable design for automotive products: dismantling and recycling of end-of-life vehicles.
    Tian J; Chen M
    Waste Manag; 2014 Feb; 34(2):458-67. PubMed ID: 24326159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward sustainable material usage: evaluating the importance of market motivated agency in modeling material flows.
    Gaustad G; Olivetti E; Kirchain R
    Environ Sci Technol; 2011 May; 45(9):4110-7. PubMed ID: 21438601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertia of Technology Stocks: A Technology-Explicit Model for the Transition toward a Low-Carbon Global Aluminum Cycle.
    Langhorst M; Billy RG; Schwotzer C; Kaiser F; Müller DB
    Environ Sci Technol; 2024 Jun; 58(22):9624-9635. PubMed ID: 38772914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forecasting model to assess the potential of secondary lead production from lead acid battery scrap.
    Machado Santos S; Cabral Neto J; Mendonça Silva M
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5782-5793. PubMed ID: 30613889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Economic and policy instrument analyses in support of the scrap tire recycling program in Taiwan.
    Chang NB
    J Environ Manage; 2008 Feb; 86(3):435-50. PubMed ID: 17276578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development and prospects of the end-of-life vehicle recycling system in Taiwan.
    Chen KC; Huang SH; Lian IW
    Waste Manag; 2010; 30(8-9):1661-9. PubMed ID: 20382516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interval linear programming model for long-term planning of vehicle recycling in the Republic of Serbia under uncertainty.
    Simic V; Dimitrijevic B
    Waste Manag Res; 2015 Feb; 33(2):114-29. PubMed ID: 25649401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation.
    Glöser S; Soulier M; Tercero Espinoza LA
    Environ Sci Technol; 2013 Jun; 47(12):6564-72. PubMed ID: 23725041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are scarce metals in cars functionally recycled?
    Andersson M; Ljunggren Söderman M; Sandén BA
    Waste Manag; 2017 Feb; 60():407-416. PubMed ID: 27395755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal Recycling of Steel Scrap and Alloying Elements: Input-Output based Linear Programming Method with Its Application to End-of-Life Vehicles in Japan.
    Ohno H; Matsubae K; Nakajima K; Kondo Y; Nakamura S; Fukushima Y; Nagasaka T
    Environ Sci Technol; 2017 Nov; 51(22):13086-13094. PubMed ID: 29111691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.