BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22816559)

  • 1. Covalent assembly of gold nanoparticles: an application toward transistor memory.
    Gupta RK; Ying G; Srinivasan MP; Lee PS
    J Phys Chem B; 2012 Aug; 116(32):9784-90. PubMed ID: 22816559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent assembly of gold nanoparticles for nonvolatile memory applications.
    Gupta RK; Kusuma DY; Lee PS; Srinivasan MP
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4619-25. PubMed ID: 22023018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonvolatile memory device using gold nanoparticles covalently bound to reduced graphene oxide.
    Cui P; Seo S; Lee J; Wang L; Lee E; Min M; Lee H
    ACS Nano; 2011 Sep; 5(9):6826-33. PubMed ID: 21842848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic field-effect transistor memory devices using discrete ferritin nanoparticle-based gate dielectrics.
    Kim BJ; Ko Y; Cho JH; Cho J
    Small; 2013 Nov; 9(22):3784-91. PubMed ID: 23666682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct electrochemistry of Phanerochaete chrysosporium cellobiose dehydrogenase covalently attached onto gold nanoparticle modified solid gold electrodes.
    Matsumura H; Ortiz R; Ludwig R; Igarashi K; Samejima M; Gorton L
    Langmuir; 2012 Jul; 28(29):10925-33. PubMed ID: 22746277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low voltage flexible nonvolatile memory with gold nanoparticles embedded in poly(methyl methacrylate).
    Zhou Y; Han ST; Xu ZX; Roy VA
    Nanotechnology; 2012 Aug; 23(34):344014. PubMed ID: 22885601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transistor memory devices with large memory windows, using multi-stacking of densely packed, hydrophobic charge trapping metal nanoparticle array.
    Cho I; Kim BJ; Ryu SW; Cho JH; Cho J
    Nanotechnology; 2014 Dec; 25(50):505604. PubMed ID: 25426661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase transfer of large gold nanoparticles to organic solvents with increased stability.
    McMahon JM; Emory SR
    Langmuir; 2007 Jan; 23(3):1414-8. PubMed ID: 17241067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing charge-storage capacity of non-volatile memory devices using template-directed assembly of gold nanoparticles.
    Gupta RK; Krishnamoorthy S; Kusuma DY; Lee PS; Srinivasan MP
    Nanoscale; 2012 Apr; 4(7):2296-300. PubMed ID: 22374470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric bistability in pentacene film-based transistor embedding gold nanoparticles.
    Tseng CW; Tao YT
    J Am Chem Soc; 2009 Sep; 131(34):12441-50. PubMed ID: 19655797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchically built gold nanoparticle supercluster arrays as charge storage centers for enhancing the performance of flash memory devices.
    Suresh V; Kusuma DY; Lee PS; Yap FL; Srinivasan MP; Krishnamoorthy S
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):279-86. PubMed ID: 25427075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties.
    Lee JS; Cho J; Lee C; Kim I; Park J; Kim YM; Shin H; Lee J; Caruso F
    Nat Nanotechnol; 2007 Dec; 2(12):790-5. PubMed ID: 18654433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance Flexible Organic Nano-Floating Gate Memory Devices Functionalized with Cobalt Ferrite Nanoparticles.
    Jung JH; Kim S; Kim H; Park J; Oh JH
    Small; 2015 Oct; 11(37):4976-84. PubMed ID: 26153227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Performance Nonvolatile Transistor Memories Utilizing Functional Polyimide-Based Supramolecular Electrets.
    Tung WY; Li MH; Wu HC; Liu HY; Hsieh YT; Chen WC
    Chem Asian J; 2016 May; 11(10):1631-40. PubMed ID: 27061212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid Flexible Resistive Random Access Memory-Gated Transistor for Novel Nonvolatile Data Storage.
    Han ST; Zhou Y; Chen B; Wang C; Zhou L; Yan Y; Zhuang J; Sun Q; Zhang H; Roy VA
    Small; 2016 Jan; 12(3):390-6. PubMed ID: 26578160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. Toward the development of charge storage and communication devices.
    Fabre B
    Acc Chem Res; 2010 Dec; 43(12):1509-18. PubMed ID: 20949977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanoparticle charge trapping and relation to organic polymer memory devices.
    Prime D; Paul S; Josephs-Franks PW
    Philos Trans A Math Phys Eng Sci; 2009 Oct; 367(1905):4215-25. PubMed ID: 19770145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the characteristics of an organic nano floating gate memory by a self-assembled monolayer.
    Chang HC; Lee WY; Tai Y; Wu KW; Chen WC
    Nanoscale; 2012 Oct; 4(20):6629-36. PubMed ID: 22983559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic Effects of Self-Doped Nanostructures as Charge Trapping Elements in Organic Field Effect Transistor Memory.
    Ling H; Lin J; Yi M; Liu B; Li W; Lin Z; Xie L; Bao Y; Guo F; Huang W
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):18969-77. PubMed ID: 27363281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.