These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22816722)

  • 1. AMPK vs mTORC1 signaling: genuine exercise effects of differentiated exercise in humans. Response to letter to editor by Dr A. K. Yamada.
    Vissing K; McGee SL; Farup J; Kjølhede T; Vendelbo MH; Jessen N
    Scand J Med Sci Sports; 2012 Aug; 22(4):580-1. PubMed ID: 22816722
    [No Abstract]   [Full Text] [Related]  

  • 2. Boosting mitochondrial biogenesis or protein synthesis in human skeletal muscle: Novel insights.
    Yamada AK
    Scand J Med Sci Sports; 2012 Jun; 22(3):451-2. PubMed ID: 22612363
    [No Abstract]   [Full Text] [Related]  

  • 3. Skeletal muscle hypertrophy after aerobic exercise training.
    Konopka AR; Harber MP
    Exerc Sport Sci Rev; 2014 Apr; 42(2):53-61. PubMed ID: 24508740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of AMPK in skeletal muscle gene adaptation in relation to exercise.
    Jørgensen SB; Jensen TE; Richter EA
    Appl Physiol Nutr Metab; 2007 Oct; 32(5):904-11. PubMed ID: 18059615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Review of exercise in prevention of diabetes].
    Ishida T
    Nihon Rinsho; 2005 Feb; 63 Suppl 2():513-6. PubMed ID: 15779432
    [No Abstract]   [Full Text] [Related]  

  • 6. Exercise-induced mitochondrial biogenesis in skeletal muscle.
    Hood DA; Saleem A
    Nutr Metab Cardiovasc Dis; 2007 Jun; 17(5):332-7. PubMed ID: 17467251
    [No Abstract]   [Full Text] [Related]  

  • 7. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals.
    Vissing K; McGee S; Farup J; Kjølhede T; Vendelbo M; Jessen N
    Scand J Med Sci Sports; 2013 Jun; 23(3):355-66. PubMed ID: 23802289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of AMPK in controlling metabolism and mitochondrial biogenesis during exercise.
    Marcinko K; Steinberg GR
    Exp Physiol; 2014 Dec; 99(12):1581-5. PubMed ID: 25261498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle.
    Fentz J; Kjøbsted R; Kristensen CM; Hingst JR; Birk JB; Gudiksen A; Foretz M; Schjerling P; Viollet B; Pilegaard H; Wojtaszewski JF
    Am J Physiol Endocrinol Metab; 2015 Dec; 309(11):E900-14. PubMed ID: 26419588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity of the muscle proteome to exercise at altitude.
    Flueck M
    High Alt Med Biol; 2009; 10(2):183-93. PubMed ID: 19519225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle.
    Granata C; Oliveira RS; Little JP; Renner K; Bishop DJ
    FASEB J; 2016 Feb; 30(2):959-70. PubMed ID: 26572168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle.
    Apró W; Wang L; Pontén M; Blomstrand E; Sahlin K
    Am J Physiol Endocrinol Metab; 2013 Jul; 305(1):E22-32. PubMed ID: 23632629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle.
    Chen CCW; Erlich AT; Hood DA
    Skelet Muscle; 2018 Mar; 8(1):10. PubMed ID: 29549884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central leptin activates mitochondrial function and increases heat production in skeletal muscle.
    Henry BA; Andrews ZB; Rao A; Clarke IJ
    Endocrinology; 2011 Jul; 152(7):2609-18. PubMed ID: 21558317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aging and acute exercise enhance free radical generation in rat skeletal muscle.
    Bejma J; Ji LL
    J Appl Physiol (1985); 1999 Jul; 87(1):465-70. PubMed ID: 10409609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal Muscle Remodeling: Interconnections Between Stem Cells and Protein Turnover.
    Burd NA; De Lisio M
    Exerc Sport Sci Rev; 2017 Jul; 45(3):187-191. PubMed ID: 28419002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Nuclear Receptor Nor-1 Is a Pleiotropic Regulator of Exercise-Induced Adaptations.
    Pearen MA; Muscat GEO
    Exerc Sport Sci Rev; 2018 Apr; 46(2):97-104. PubMed ID: 29346164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UCP-3 expression in skeletal muscle: effects of exercise, hypoxia, and AMP-activated protein kinase.
    Zhou M; Lin BZ; Coughlin S; Vallega G; Pilch PF
    Am J Physiol Endocrinol Metab; 2000 Sep; 279(3):E622-9. PubMed ID: 10950831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The exercise dose response: key lessons from the past.
    Bamman MM
    Am J Physiol Endocrinol Metab; 2008 Feb; 294(2):E230-1. PubMed ID: 18160457
    [No Abstract]   [Full Text] [Related]  

  • 20. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle.
    Dreyer HC; Fujita S; Cadenas JG; Chinkes DL; Volpi E; Rasmussen BB
    J Physiol; 2006 Oct; 576(Pt 2):613-24. PubMed ID: 16873412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.