These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 22817278)
1. Field-effect transistors based on silicon nanowire arrays: effect of the good and the bad silicon nanowires. Wang B; Stelzner T; Dirawi R; Assad O; Shehada N; Christiansen S; Haick H ACS Appl Mater Interfaces; 2012 Aug; 4(8):4251-8. PubMed ID: 22817278 [TBL] [Abstract][Full Text] [Related]
3. Influence of catalyst choices on transport behaviors of InAs NWs for high-performance nanoscale transistors. Chen SY; Wang CY; Ford AC; Chou JC; Wang YC; Wang FY; Ho JC; Wang HC; Javey A; Gan JY; Chen LJ; Chueh YL Phys Chem Chem Phys; 2013 Feb; 15(8):2654-9. PubMed ID: 23340577 [TBL] [Abstract][Full Text] [Related]
4. Electrical properties of flexible multi-channel Si nanowire field-effect transistors depending on the number of Si nanowires. Kim do H; Lee SJ; Lee SH; Myoung JM Chem Commun (Camb); 2016 May; 52(42):6938-41. PubMed ID: 27149060 [TBL] [Abstract][Full Text] [Related]
5. Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires. Ozdemir B; Kulakci M; Turan R; Unalan HE Nanotechnology; 2011 Apr; 22(15):155606. PubMed ID: 21389572 [TBL] [Abstract][Full Text] [Related]
6. Direct gravure printing of silicon nanowires using entropic attraction forces. Seo J; Lee H; Lee S; Lee TI; Myoung JM; Lee T Small; 2012 May; 8(10):1614-21. PubMed ID: 22431282 [TBL] [Abstract][Full Text] [Related]
7. Tuning the electrical transport properties of n-type CdS nanowires via Ga doping and their nano-optoelectronic applications. Cai J; Jie J; Jiang P; Wu D; Xie C; Wu C; Wang Z; Yu Y; Wang L; Zhang X; Peng Q; Jiang Y Phys Chem Chem Phys; 2011 Aug; 13(32):14663-7. PubMed ID: 21709907 [TBL] [Abstract][Full Text] [Related]
8. Advanced fabrication of Si nanowire FET structures by means of a parallel approach. Li J; Pud S; Mayer D; Vitusevich S Nanotechnology; 2014 Jul; 25(27):275302. PubMed ID: 24959696 [TBL] [Abstract][Full Text] [Related]
9. Interface Passivation and Trap Reduction via a Solution-Based Method for Near-Zero Hysteresis Nanowire Field-Effect Transistors. Constantinou M; Stolojan V; Rajeev KP; Hinder S; Fisher B; Bogart TD; Korgel BA; Shkunov M ACS Appl Mater Interfaces; 2015 Oct; 7(40):22115-20. PubMed ID: 26402417 [TBL] [Abstract][Full Text] [Related]
10. Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors. Zou X; Liu X; Wang C; Jiang Y; Wang Y; Xiao X; Ho JC; Li J; Jiang C; Xiong Q; Liao L ACS Nano; 2013 Jan; 7(1):804-10. PubMed ID: 23228028 [TBL] [Abstract][Full Text] [Related]
11. Enhanced sensing of nonpolar volatile organic compounds by silicon nanowire field effect transistors. Paska Y; Stelzner T; Christiansen S; Haick H ACS Nano; 2011 Jul; 5(7):5620-6. PubMed ID: 21648442 [TBL] [Abstract][Full Text] [Related]
12. Blueshift of electroluminescence from single n-InP nanowire/p-Si heterojunctions due to the Burstein-Moss effect. Liu C; Dai L; You LP; Xu WJ; Qin GG Nanotechnology; 2008 Nov; 19(46):465203. PubMed ID: 21836237 [TBL] [Abstract][Full Text] [Related]
13. An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters. Liu CY; Li WS; Chu LW; Lu MY; Tsai CJ; Chen LJ Nanotechnology; 2011 Feb; 22(5):055603. PubMed ID: 21178255 [TBL] [Abstract][Full Text] [Related]
14. A facile route to Si nanowire gate-all-around field effect transistors with a steep subthreshold slope. Lee JH; Kim BS; Choi SH; Jang Y; Hwang SW; Whang D Nanoscale; 2013 Oct; 5(19):8968-72. PubMed ID: 23969942 [TBL] [Abstract][Full Text] [Related]
15. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Xiang J; Lu W; Hu Y; Wu Y; Yan H; Lieber CM Nature; 2006 May; 441(7092):489-93. PubMed ID: 16724062 [TBL] [Abstract][Full Text] [Related]
16. A route for modulating the diameter of cylindrical silicon nanowires by using thermal self-ordering silver nanoparticles. Lee SH; Lee TI; Moon KJ; Myoung JM ACS Appl Mater Interfaces; 2013 Nov; 5(22):11777-82. PubMed ID: 24156659 [TBL] [Abstract][Full Text] [Related]
17. Modulating the morphology and electrical properties of GaAs nanowires via catalyst stabilization by oxygen. Han N; Yang Z; Wang F; Yip S; Dong G; Liang X; Hung T; Chen Y; Ho JC ACS Appl Mater Interfaces; 2015 Mar; 7(9):5591-7. PubMed ID: 25700210 [TBL] [Abstract][Full Text] [Related]
18. Growth direction modulation and diameter-dependent mobility in InN nanowires. Koley G; Cai Z; Quddus EB; Liu J; Qazi M; Webb RA Nanotechnology; 2011 Jul; 22(29):295701. PubMed ID: 21673377 [TBL] [Abstract][Full Text] [Related]
19. Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires. Haick H; Hurley PT; Hochbaum AI; Yang P; Lewis NS J Am Chem Soc; 2006 Jul; 128(28):8990-1. PubMed ID: 16834345 [TBL] [Abstract][Full Text] [Related]
20. Multiple Schottky Barrier-Limited Field-Effect Transistors on a Single Silicon Nanowire with an Intrinsic Doping Gradient. Barreda JL; Keiper TD; Zhang M; Xiong P ACS Appl Mater Interfaces; 2017 Apr; 9(13):12046-12053. PubMed ID: 28274114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]