These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22817553)

  • 1. Motion of the head and neck of female and male volunteers in rear impact car-to-car impacts.
    Carlsson A; Siegmund GP; Linder A; Svensson MY
    Traffic Inj Prev; 2012; 13(4):378-87. PubMed ID: 22817553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic kinematic responses of female volunteers in rear impacts and comparison to previous male volunteer tests.
    Carlsson A; Linder A; Davidsson J; Hell W; Schick S; Svensson M
    Traffic Inj Prev; 2011 Aug; 12(4):347-57. PubMed ID: 21823943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthropometric specifications, development, and evaluation of EvaRID--a 50th percentile female rear impact finite element dummy model.
    Carlsson A; Chang F; Lemmen P; Kullgren A; Schmitt KU; Linder A; Svensson MY
    Traffic Inj Prev; 2014; 15(8):855-65. PubMed ID: 24484526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seat influences on female neck responses in rear crashes: a reason why women have higher whiplash rates.
    Viano DC
    Traffic Inj Prev; 2003 Sep; 4(3):228-39. PubMed ID: 14522647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Average male and female virtual dummy model (BioRID and EvaRID) simulations with two seat concepts in the Euro NCAP low severity rear impact test configuration.
    Linder A; Holmqvist K; Svensson MY
    Accid Anal Prev; 2018 May; 114():62-70. PubMed ID: 28622848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seat properties affecting neck responses in rear crashes: a reason why whiplash has increased.
    Viano DC
    Traffic Inj Prev; 2003 Sep; 4(3):214-27. PubMed ID: 14522646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The RID2 biofidelic rear impact dummy: a pilot study using human subjects in low speed rear impact full scale crash tests.
    Croft AC; Philippens MM
    Accid Anal Prev; 2007 Mar; 39(2):340-6. PubMed ID: 17094931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Evaluation of the Initial 50th Percentile Female Prototype Rear Impact Dummy, BioRID P50F - Indications for the Need of an Additional Dummy Size.
    Carlsson A; Davidsson J; Linder A; Svensson MY
    Front Bioeng Biotechnol; 2021; 9():687058. PubMed ID: 34336802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rebound after rear impacts.
    Viano DC; Parenteau CS; Burnett R
    Traffic Inj Prev; 2013; 14(2):181-7. PubMed ID: 23343027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of belt pretensioning on dummy responses in 40 km/h rear-impact sled tests.
    Viano DC; Parenteau CS; Burnett R
    Traffic Inj Prev; 2012; 13(1):65-71. PubMed ID: 22239146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internal loads in the cervical spine during motor vehicle rear-end impacts: the effect of acceleration and head-to-head restraint proximity.
    Tencer AF; Mirza S; Bensel K
    Spine (Phila Pa 1976); 2002 Jan; 27(1):34-42. PubMed ID: 11805633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of initial seated position in low speed rear-end impacts: a comparison with the TNO rear impact dummy (TRID) model.
    Venkataramana MP; Hans SA; Bawab SY; Keifer OP; Woodhouse ML; Layson PD
    Traffic Inj Prev; 2005 Mar; 6(1):77-85. PubMed ID: 15823879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding whiplash injury and prevention mechanisms using a human model of the neck.
    Ivancic PC; Xiao M
    Accid Anal Prev; 2011 Jul; 43(4):1392-9. PubMed ID: 21545871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of standing or seated pelvis on dummy responses in rear impacts.
    Viano DC; Parenteau CS; Burnett R
    Accid Anal Prev; 2012 Mar; 45():423-31. PubMed ID: 22269526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BioRID dummy responses in matched ABTS and conventional seat tests on the IIHS rear sled.
    Viano DC; Parenteau CS
    Traffic Inj Prev; 2011 Aug; 12(4):339-46. PubMed ID: 21823942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A methodology to estimate the kinematics of pediatric occupants in frontal impacts.
    Lopez-Valdes FJ; Seacrist T; Arbogast KB; Balasubramanian S; Maltese MR; Tanji H; Higuchi K; Kent R
    Traffic Inj Prev; 2012; 13(4):393-401. PubMed ID: 22817555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occupant responses in conventional and ABTS seats in high-speed rear sled tests.
    Viano DC; Parenteau CS; Burnett R; Prasad P
    Traffic Inj Prev; 2018 Jan; 19(1):54-59. PubMed ID: 28678610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematics of child volunteers and child anthropomorphic test devices during emergency braking events in real car environment.
    Stockman I; Bohman K; Jakobsson L; Brolin K
    Traffic Inj Prev; 2013; 14(1):92-102. PubMed ID: 23259524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion sequence criteria for favorable occupant kinematics in rear impacts.
    Viano DC
    Traffic Inj Prev; 2023; 24(3):189-195. PubMed ID: 36305804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of seat foam and geometrical properties on BioRID P3 kinematic response to rear impacts.
    Szabo TJ; Voss DP; Welcher JB
    Traffic Inj Prev; 2003 Dec; 4(4):315-23. PubMed ID: 14630580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.