These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22817739)

  • 1. Cytoplasmic mRNA 3' tagging in eukaryotes: does it spell the end?
    Morozov IY; Caddick MX
    Biochem Soc Trans; 2012 Aug; 40(4):810-4. PubMed ID: 22817739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone mRNA is subject to 3' uridylation and re-adenylation in Aspergillus nidulans.
    Mossanen-Parsi A; Parisi D; Browne-Marke N; Bharudin I; Connell SR; Mayans O; Fucini P; Morozov IY; Caddick MX
    Mol Microbiol; 2021 Feb; 115(2):238-254. PubMed ID: 33047379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surveillance-ready transcription: nuclear RNA decay as a default fate.
    Bresson S; Tollervey D
    Open Biol; 2018 Mar; 8(3):. PubMed ID: 29563193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mRNA 3' tagging is induced by nonsense-mediated decay and promotes ribosome dissociation.
    Morozov IY; Jones MG; Gould PD; Crome V; Wilson JB; Hall AJ; Rigden DJ; Caddick MX
    Mol Cell Biol; 2012 Jul; 32(13):2585-95. PubMed ID: 22547684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CUCU modification of mRNA promotes decapping and transcript degradation in Aspergillus nidulans.
    Morozov IY; Jones MG; Razak AA; Rigden DJ; Caddick MX
    Mol Cell Biol; 2010 Jan; 30(2):460-9. PubMed ID: 19901075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the arginase coding gene and its transcript in Aspergillus nidulans.
    Borsuk P; Dzikowska A; Empel J; Grzelak A; Grześkowiak R; Weglenski P
    Acta Biochim Pol; 1999; 46(2):391-403. PubMed ID: 10547040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyuridylation in Eukaryotes: A 3'-End Modification Regulating RNA Life.
    Munoz-Tello P; Rajappa L; Coquille S; Thore S
    Biomed Res Int; 2015; 2015():968127. PubMed ID: 26078976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA uridylation: a key posttranscriptional modification shaping the coding and noncoding transcriptome.
    De Almeida C; Scheer H; Zuber H; Gagliardi D
    Wiley Interdiscip Rev RNA; 2018 Jan; 9(1):. PubMed ID: 28984054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the spliced and unspliced late lytic SV40 RNAs.
    Lai CJ; Dhar R; Khoury G
    Cell; 1978 Aug; 14(4):971-82. PubMed ID: 210961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginine catabolism in Aspergillus nidulans is regulated by the rrmA gene coding for the RNA-binding protein.
    Olszewska A; Król K; Weglenski P; Dzikowska A
    Fungal Genet Biol; 2007 Dec; 44(12):1285-97. PubMed ID: 17719249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into polycistronic transcripts in eukaryotes.
    Pi H; Lee LW; Lo SJ
    Chang Gung Med J; 2009; 32(5):494-8. PubMed ID: 19840506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mRNA decay in plants: both quantity and quality matter.
    Zhang X; Guo H
    Curr Opin Plant Biol; 2017 Feb; 35():138-144. PubMed ID: 28011423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient cell-free translation system from Aspergillus nidulans and in vitro translocation of prepro-alpha-factor across Aspergillus microsomes.
    Devchand M; Gwynne D; Buxton FP; Davies RW
    Curr Genet; 1988 Dec; 14(6):561-6. PubMed ID: 3072100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and molecular characterization of a gene encoding a wide specificity purine permease of Aspergillus nidulans reveals a novel family of transporters conserved in prokaryotes and eukaryotes.
    Diallinas G; Gorfinkiel L; Arst HN; Cecchetto G; Scazzocchio C
    J Biol Chem; 1995 Apr; 270(15):8610-22. PubMed ID: 7721763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental and metabolic regulation of the phosphoglucomutase-encoding gene, pgmB, of Aspergillus nidulans.
    Hoffmann B; LaPaglia SK; Kübler E; Andermann M; Eckert SE; Braus GH
    Mol Gen Genet; 2000 Jan; 262(6):1001-11. PubMed ID: 10660061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of RNA Modifications and RNA-Modifying Enzymes on Eukaryotic Ribonucleases.
    Chanfreau GF
    Enzymes; 2017; 41():299-329. PubMed ID: 28601225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 5' and 3' modifications controlling RNA degradation: from safeguards to executioners.
    Gagliardi D; Dziembowski A
    Philos Trans R Soc Lond B Biol Sci; 2018 Nov; 373(1762):. PubMed ID: 30397097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in the regulation of aldehyde dehydrogenase genes in Aspergillus niger and Aspergillus nidulans.
    O'Connell MJ; Kelly JM
    Curr Genet; 1988 Aug; 14(2):95-103. PubMed ID: 2846191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is mRNA decapping by ApaH like phosphatases present in eukaryotes beyond the Kinetoplastida?
    Castañeda Londoño PA; Banholzer N; Bannermann B; Kramer S
    BMC Ecol Evol; 2021 Jun; 21(1):131. PubMed ID: 34162332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Many Messenger RNAs Can Be Translated by the START Mechanism?
    Despons L; Martin F
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.