BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22818736)

  • 1. Theoretical comparison of the performance of gradient elution chromatography at constant pressure and constant flow rate.
    Gritti F; Guiochon G
    J Chromatogr A; 2012 Aug; 1253():71-82. PubMed ID: 22818736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic performance limits of constant pressure versus constant flow rate gradient elution separations. Part I: theory.
    Broeckhoven K; Verstraeten M; Choikhet K; Dittmann M; Witt K; Desmet G
    J Chromatogr A; 2011 Feb; 1218(8):1153-69. PubMed ID: 21256492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic performance limits of constant pressure versus constant flow rate gradient elution separations. Part II: experimental.
    Verstraeten M; Broeckhoven K; Dittmann M; Choikhet K; Witt K; Desmet G
    J Chromatogr A; 2011 Feb; 1218(8):1170-84. PubMed ID: 21256497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential advantage of constant pressure versus constant flow gradient chromatography for the analysis of small molecules.
    Gritti F; Stankovich JJ; Guiochon G
    J Chromatogr A; 2012 Nov; 1263():51-60. PubMed ID: 23040976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the quantitative performance of constant pressure versus constant flow rate gradient elution separations using concentration-sensitive detectors.
    Verstraeten M; Broeckhoven K; Lynen F; Choikhet K; Dittmann M; Witt K; Sandra P; Desmet G
    J Chromatogr A; 2012 Apr; 1232():65-76. PubMed ID: 22055519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gradient chromatography under constant frictional heat: realization and application.
    Gritti F; Guiochon G
    J Chromatogr A; 2013 May; 1289():1-12. PubMed ID: 23566917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental band compression factor of a neutral compound under high pressure gradient elution.
    Gritti F; Guiochon G
    J Chromatogr A; 2008 Dec; 1215(1-2):64-73. PubMed ID: 19027118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical evaluation of the advantages and limitations of constant pressure versus constant flow rate gradient elution separation in supercritical fluid chromatography.
    De Pauw R; Desmet G; Broeckhoven K
    J Chromatogr A; 2013 Oct; 1312():134-42. PubMed ID: 24041511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of column length, particle size, gradient length and flow rate on peak capacity of nano-scale liquid chromatography for peptide separations.
    Liu H; Finch JW; Lavallee MJ; Collamati RA; Benevides CC; Gebler JC
    J Chromatogr A; 2007 Apr; 1147(1):30-6. PubMed ID: 17320886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the gradient kinetic performance of silica monolithic capillary columns with columns packed with 3 μm porous and 2.7 μm fused-core silica particles.
    Vaast A; Broeckhoven K; Dolman S; Desmet G; Eeltink S
    J Chromatogr A; 2012 Mar; 1228():270-5. PubMed ID: 21855077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical modeling of elution peak profiles in supercritical fluid chromatography. Part I--elution of an unretained tracer.
    Kaczmarski K; Poe DP; Guiochon G
    J Chromatogr A; 2010 Oct; 1217(42):6578-87. PubMed ID: 20813372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimode gradient elution in reversed-phase liquid chromatography: application to retention prediction and separation optimization of a set of amino acids in gradient runs involving simultaneous variations of mobile-phase composition, flow rate, and temperature.
    Pappa-Louisi A; Nikitas P; Papachristos K; Balkatzopoulou P
    Anal Chem; 2009 Feb; 81(3):1217-23. PubMed ID: 19123773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the effects of methanol and competing ion concentration on retention in the ion chromatographic separation of anionic and cationic pharmaceutically related compounds.
    Zakaria P; Dicinoski G; Hanna-Brown M; Haddad PR
    J Chromatogr A; 2010 Sep; 1217(39):6069-76. PubMed ID: 20732686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximizing peak capacity and separation speed in liquid chromatography.
    Petersson P; Frank A; Heaton J; Euerby MR
    J Sep Sci; 2008 Jul; 31(13):2346-57. PubMed ID: 18646261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peak capacity in gradient reversed-phase liquid chromatography of biopolymers. Theoretical and practical implications for the separation of oligonucleotides.
    Gilar M; Neue UD
    J Chromatogr A; 2007 Oct; 1169(1-2):139-50. PubMed ID: 17897658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methacrylate monolithic capillary columns for gradient peptide separations.
    Pruim P; Ohman M; Huo Y; Schoenmakers PJ; Kok WT
    J Chromatogr A; 2008 Oct; 1208(1-2):109-15. PubMed ID: 18771770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exact peak compression factor in linear gradient elution. I. Theory.
    Gritti F; Guiochon G
    J Chromatogr A; 2008 Nov; 1212(1-2):35-40. PubMed ID: 18951548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Column equilibration effects in gradient elution in reversed-phase liquid chromatography.
    Pappa-Louisi A; Nikitas P; Agrafiotou P
    J Chromatogr A; 2006 Sep; 1127(1-2):97-107. PubMed ID: 16797559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of pressure and temperature on the physico-chemical properties of mobile phase mixtures commonly used in high-performance liquid chromatography.
    Billen J; Broeckhoven K; Liekens A; Choikhet K; Rozing G; Desmet G
    J Chromatogr A; 2008 Nov; 1210(1):30-44. PubMed ID: 18834987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The change of pressure drop during large-scale chromatography of viscous samples.
    Felinger A; Guiochon G
    Biotechnol Prog; 1993; 9(5):450-5. PubMed ID: 7764161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.