BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 22818952)

  • 1. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.
    Bäuerlein PS; Ter Laak TL; Hofman-Caris RC; de Voogt P; Droge ST
    Water Res; 2012 Oct; 46(16):5009-18. PubMed ID: 22818952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption of micropollutant estrone to a water treatment ion exchange resin.
    Neale PA; Mastrup M; Borgmann T; Schäfer AI
    J Environ Monit; 2010 Jan; 12(1):311-7. PubMed ID: 20082027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micropollutant sorption to membrane polymers: a review of mechanisms for estrogens.
    Schäfer AI; Akanyeti I; Semião AJ
    Adv Colloid Interface Sci; 2011 May; 164(1-2):100-17. PubMed ID: 21106187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sodium and calcium cations on the ion-exchange affinity of organic cations for soil organic matter.
    Droge S; Goss KU
    Environ Sci Technol; 2012 Jun; 46(11):5894-901. PubMed ID: 22540998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion.
    Pan BC; Zhang QR; Zhang WM; Pan BJ; Du W; Lv L; Zhang QJ; Xu ZW; Zhang QX
    J Colloid Interface Sci; 2007 Jun; 310(1):99-105. PubMed ID: 17336317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion-exchange affinity of organic cations to natural organic matter: influence of amine type and nonionic interactions at two different pHs.
    Droge ST; Goss KU
    Environ Sci Technol; 2013 Jan; 47(2):798-806. PubMed ID: 23214498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and preliminary assessment of polymer-supported zirconium phosphate for selective lead removal from contaminated water.
    Pan B; Pan B; Chen X; Zhang W; Zhang X; Zhang Q; Zhang Q; Chen J
    Water Res; 2006 Aug; 40(15):2938-46. PubMed ID: 16844183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin.
    Dizge N; Keskinler B; Barlas H
    J Hazard Mater; 2009 Aug; 167(1-3):915-26. PubMed ID: 19231079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations.
    Kutzner S; Schaffer M; Börnick H; Licha T; Worch E
    Water Res; 2014 May; 54():273-83. PubMed ID: 24584001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of competing inorganic cations on the ion exchange equilibrium of the monovalent organic cation metoprolol on natural sediment.
    Niedbala A; Schaffer M; Licha T; Nödler K; Börnick H; Ruppert H; Worch E
    Chemosphere; 2013 Feb; 90(6):1945-51. PubMed ID: 23159068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of donnan membrane effect.
    Cumbal L; Sengupta AK
    Environ Sci Technol; 2005 Sep; 39(17):6508-15. PubMed ID: 16190206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: behavior and XPS study.
    Pan B; Qiu H; Pan B; Nie G; Xiao L; Lv L; Zhang W; Zhang Q; Zheng S
    Water Res; 2010 Feb; 44(3):815-24. PubMed ID: 19906397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins.
    Caetano M; Valderrama C; Farran A; Cortina JL
    J Colloid Interface Sci; 2009 Oct; 338(2):402-9. PubMed ID: 19679317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption mechanism and predictive models for removal of cationic organic contaminants by cation exchange resins.
    Jadbabaei N; Zhang H
    Environ Sci Technol; 2014 Dec; 48(24):14572-81. PubMed ID: 25409479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of chromium from electroplating industry effluents by ion exchange resins.
    Cavaco SA; Fernandes S; Quina MM; Ferreira LM
    J Hazard Mater; 2007 Jun; 144(3):634-8. PubMed ID: 17336455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of organic matter type and medium composition on the sorption affinity of C12-benzalkonium cation.
    Chen Y; Hermens JL; Droge ST
    Environ Pollut; 2013 Aug; 179():153-9. PubMed ID: 23676325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption of Zn(II) in aqueous solutions by scoria.
    Kwon JS; Yun ST; Kim SO; Mayer B; Hutcheon I
    Chemosphere; 2005 Sep; 60(10):1416-26. PubMed ID: 16054911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of cadmium from aqueous solutions by palygorskite.
    Alvarez-Ayuso E; García-Sánchez A
    J Hazard Mater; 2007 Aug; 147(1-2):594-600. PubMed ID: 17367922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption behavior of charged and neutral polar organic compounds on solid phase extraction materials: which functional group governs sorption?
    Bäuerlein PS; Mansell JE; Ter Laak TL; de Voogt P
    Environ Sci Technol; 2012 Jan; 46(2):954-61. PubMed ID: 22191575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorptive selenite removal from water using a nano-hydrated ferric oxides (HFOs)/polymer hybrid adsorbent.
    Pan B; Xiao L; Nie G; Pan B; Wu J; Lv L; Zhang W; Zheng S
    J Environ Monit; 2010 Jan; 12(1):305-10. PubMed ID: 20082026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.