These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 22818952)

  • 41. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.
    Jolin WC; Goyetche R; Carter K; Medina J; Vasudevan D; MacKay AA
    Environ Sci Technol; 2017 Jun; 51(11):6193-6201. PubMed ID: 28459593
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents.
    Genç-Fuhrman H; Mikkelsen PS; Ledin A
    Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selection of representative emerging micropollutants for drinking water treatment studies: a systematic approach.
    Jin X; Peldszus S
    Sci Total Environ; 2012 Jan; 414():653-63. PubMed ID: 22142647
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Removal of fluoride from aqueous environment by modified Amberlite resin.
    Solangi IB; Memon S; Bhanger MI
    J Hazard Mater; 2009 Nov; 171(1-3):815-9. PubMed ID: 19608334
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Removal of fluoride from aqueous phase by biosorption onto algal biosorbent Spirogyra sp.-IO2: sorption mechanism elucidation.
    Venkata Mohan S; Ramanaiah SV; Rajkumar B; Sarma PN
    J Hazard Mater; 2007 Mar; 141(3):465-74. PubMed ID: 16920254
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficiency of aluminum-pillared montmorillonite on the removal of cesium and copper from aqueous solutions.
    Karamanis D; Assimakopoulos PA
    Water Res; 2007 May; 41(9):1897-906. PubMed ID: 17374545
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of a novel hybrid inorganic/organic polymer type material in the arsenic removal process from drinking water.
    Iesan CM; Capat C; Ruta F; Udrea I
    Water Res; 2008 Oct; 42(16):4327-33. PubMed ID: 18778845
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adsorption of fluoride, chloride, bromide, and bromate ions on a novel ion exchanger.
    Chubar NI; Samanidou VF; Kouts VS; Gallios GG; Kanibolotsky VA; Strelko VV; Zhuravlev IZ
    J Colloid Interface Sci; 2005 Nov; 291(1):67-74. PubMed ID: 15964584
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bromate removal from water by granular ferric hydroxide (GFH).
    Bhatnagar A; Choi Y; Yoon Y; Shin Y; Jeon BH; Kang JW
    J Hazard Mater; 2009 Oct; 170(1):134-40. PubMed ID: 19481866
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of adsorption capacity of young brown coals and humic acids prepared from different coal mines in Anatolia.
    Pehlivan E; Arslan G
    J Hazard Mater; 2006 Nov; 138(2):401-8. PubMed ID: 16962233
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Separation and determination of arsenic species in water by selective exchange and hybrid resins.
    Ben Issa N; Rajaković-Ognjanović VN; Marinković AD; Rajaković LV
    Anal Chim Acta; 2011 Nov; 706(1):191-8. PubMed ID: 21995928
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adsorption/bioadsorption of phthalic acid, an organic micropollutant present in landfill leachates, on activated carbons.
    Méndez-Díaz JD; Abdel daiem MM; Rivera-Utrilla J; Sánchez-Polo M; Bautista-Toledo I
    J Colloid Interface Sci; 2012 Mar; 369(1):358-65. PubMed ID: 22197057
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adsorption of the quinolone antibiotic nalidixic acid onto anion-exchange and neutral polymers.
    Robberson KA; Waghe AB; Sabatini DA; Butler EC
    Chemosphere; 2006 May; 63(6):934-41. PubMed ID: 16307776
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Arsenic sorption onto laterite iron concretions: temperature effect.
    Partey F; Norman D; Ndur S; Nartey R
    J Colloid Interface Sci; 2008 May; 321(2):493-500. PubMed ID: 18346752
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis and characterization of nano-composite ion-exchanger; its adsorption behavior.
    Nabi SA; Shahadat M; Bushra R; Shalla AH; Azam A
    Colloids Surf B Biointerfaces; 2011 Oct; 87(1):122-8. PubMed ID: 21640566
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Removal of Cu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material.
    Zheng JC; Feng HM; Lam MH; Lam PK; Ding YW; Yu HQ
    J Hazard Mater; 2009 Nov; 171(1-3):780-5. PubMed ID: 19596517
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Boron removal from aqueous solutions by ion-exchange resin: column sorption-elution studies.
    Köse TE; Oztürk N
    J Hazard Mater; 2008 Apr; 152(2):744-9. PubMed ID: 17716813
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Experimentally determined soil organic matter-water sorption coefficients for different classes of natural toxins and comparison with estimated numbers.
    Schenzel J; Goss KU; Schwarzenbach RP; Bucheli TD; Droge ST
    Environ Sci Technol; 2012 Jun; 46(11):6118-26. PubMed ID: 22540838
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes.
    Verma VK; Tewari S; Rai JP
    Bioresour Technol; 2008 Apr; 99(6):1932-8. PubMed ID: 17513104
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis and characterization of zirconium titanium phosphate and its application in separation of metal ions.
    Thakkar R; Chudasama U
    J Hazard Mater; 2009 Dec; 172(1):129-37. PubMed ID: 19635644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.