These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 22819396)
1. Dendritic PtCo alloy nanoparticles as high performance oxygen reduction catalysts. Wang H; Yuan X; Li D; Gu X J Colloid Interface Sci; 2012 Oct; 384(1):105-9. PubMed ID: 22819396 [TBL] [Abstract][Full Text] [Related]
2. Temperature dependence of oxygen reduction reaction activity at stabilized Pt skin-PtCo alloy/graphitized carbon black catalysts prepared by a modified nanocapsule method. Okaya K; Yano H; Kakinuma K; Watanabe M; Uchida H ACS Appl Mater Interfaces; 2012 Dec; 4(12):6982-91. PubMed ID: 23234364 [TBL] [Abstract][Full Text] [Related]
3. Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis. Carpenter MK; Moylan TE; Kukreja RS; Atwan MH; Tessema MM J Am Chem Soc; 2012 May; 134(20):8535-42. PubMed ID: 22524269 [TBL] [Abstract][Full Text] [Related]
4. Nanoporous PtCo surface alloy architecture with enhanced properties for methanol electrooxidation. Qiu H; Zou F ACS Appl Mater Interfaces; 2012 Mar; 4(3):1404-10. PubMed ID: 22364172 [TBL] [Abstract][Full Text] [Related]
5. Oxygen reduction activity of carbon-supported Pt-M (M = V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method. Yano H; Kataoka M; Yamashita H; Uchida H; Watanabe M Langmuir; 2007 May; 23(11):6438-45. PubMed ID: 17441742 [TBL] [Abstract][Full Text] [Related]
6. Composition-controlled PtCo alloy nanocubes with tuned electrocatalytic activity for oxygen reduction. Choi SI; Lee SU; Kim WY; Choi R; Hong K; Nam KM; Han SW; Park JT ACS Appl Mater Interfaces; 2012 Nov; 4(11):6228-34. PubMed ID: 23106417 [TBL] [Abstract][Full Text] [Related]
7. Yttrium oxide/gadolinium oxide-modified platinum nanoparticles as cathodes for the oxygen reduction reaction. Luo Y; Habrioux A; Calvillo L; Granozzi G; Alonso-Vante N Chemphyschem; 2014 Jul; 15(10):2136-44. PubMed ID: 24819164 [TBL] [Abstract][Full Text] [Related]
8. Hollow PtCo nanospheres supported on multi-walled carbon nanotubes for methanol electrooxidation. Guo DJ; Cui SK J Colloid Interface Sci; 2009 Dec; 340(1):53-7. PubMed ID: 19772966 [TBL] [Abstract][Full Text] [Related]
9. Low-Loading Sub-3 nm PtCo Nanoparticles Supported on Co-N-C with Dual Effect for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. Guo P; Xia Y; Liu B; Ma M; Shen L; Dai Y; Zhang Z; Zhao Z; Zhang Y; Zhao L; Wang Z ACS Appl Mater Interfaces; 2022 Dec; 14(48):53819-53827. PubMed ID: 36414243 [TBL] [Abstract][Full Text] [Related]
10. Highly Ordered Pt-Based Nanoparticles Directed by the Self-Assembly of Block Copolymers for the Oxygen Reduction Reaction. Wang Z; Mai Y; Yang Y; Shen L; Yan C ACS Appl Mater Interfaces; 2021 Aug; 13(32):38138-38146. PubMed ID: 34355891 [TBL] [Abstract][Full Text] [Related]
11. Effects of Sulfate on the Oxygen Reduction Reaction Activity on Stabilized Pt Skin/PtCo Alloy Catalysts from 30 to 80 °C. Nishikawa H; Yano H; Inukai J; Tryk DA; Iiyama A; Uchida H Langmuir; 2018 Nov; 34(45):13558-13564. PubMed ID: 30378419 [TBL] [Abstract][Full Text] [Related]
12. Carbon-Supported High-Loading Sub-4 nm PtCo Alloy Electrocatalysts for Superior Oxygen Reduction Reaction. Xiang L; Hu Y; Zhao Y; Cao S; Kuai L Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630951 [TBL] [Abstract][Full Text] [Related]
13. Surface-structure tailoring of Dendritic PtCo nanowires for efficient oxygen reduction reaction. Zhang C; Chen Z; Yang H; Luo Y; Qun Tian Z; Kang Shen P J Colloid Interface Sci; 2023 Dec; 652(Pt B):1597-1608. PubMed ID: 37666192 [TBL] [Abstract][Full Text] [Related]
14. Composition-controlled synthesis of carbon-supported Pt-Co alloy nanoparticles and the origin of their ORR activity enhancement. Zhao Y; Liu J; Zhao Y; Wang F Phys Chem Chem Phys; 2014 Sep; 16(36):19298-306. PubMed ID: 25098392 [TBL] [Abstract][Full Text] [Related]
15. Tunable properties of PtxFe1-x electrocatalysts and their catalytic activity towards the oxygen reduction reaction. Lai FJ; Chou HL; Sarma LS; Wang DY; Lin YC; Lee JF; Hwang BJ; Chen CC Nanoscale; 2010 Apr; 2(4):573-81. PubMed ID: 20644761 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of Pt-Ru@PThB catalyst by gamma-irradiation and NaBH(4) as reducing agent. Ryu JH; Jung SH; Sim KS; Choi SH Appl Radiat Isot; 2009; 67(7-8):1449-53. PubMed ID: 19307126 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction. Guo S; Zhang S; Sun X; Sun S J Am Chem Soc; 2011 Oct; 133(39):15354-7. PubMed ID: 21894999 [TBL] [Abstract][Full Text] [Related]
19. Platinum-monolayer shell on AuNi(0.5)Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction. Gong K; Su D; Adzic RR J Am Chem Soc; 2010 Oct; 132(41):14364-6. PubMed ID: 20873798 [TBL] [Abstract][Full Text] [Related]
20. Polymer-mediated synthesis of highly dispersed Pt nanoparticles on carbon black. Chen M; Xing Y Langmuir; 2005 Sep; 21(20):9334-8. PubMed ID: 16171370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]