These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22819478)

  • 21. Impact of virus aggregation on inactivation by peracetic acid and implications for other disinfectants.
    Mattle MJ; Crouzy B; Brennecke M; Wigginton KR; Perona P; Kohn T
    Environ Sci Technol; 2011 Sep; 45(18):7710-7. PubMed ID: 21819042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enteric Viral Surrogate Reduction by Chitosan.
    Davis R; Zivanovic S; Davidson PM; D'Souza DH
    Food Environ Virol; 2015 Dec; 7(4):359-65. PubMed ID: 26162243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances.
    Pang L; Close M; Goltz M; Noonan M; Sinton L
    J Contam Hydrol; 2005 Apr; 77(3):165-94. PubMed ID: 15763354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transport of biocolloids in water saturated columns packed with sand: Effect of grain size and pore water velocity.
    Syngouna VI; Chrysikopoulos CV
    J Contam Hydrol; 2011 Nov; 126(3-4):301-14. PubMed ID: 22115094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inactivation of MS2 bacteriophage by streamer corona discharge in water.
    Lee C; Kim J; Yoon J
    Chemosphere; 2011 Feb; 82(8):1135-40. PubMed ID: 21144553
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles.
    Kim JY; Lee C; Love DC; Sedlak DL; Yoon J; Nelson KL
    Environ Sci Technol; 2011 Aug; 45(16):6978-84. PubMed ID: 21726084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction Between Graphene Oxide Nanoparticles and Quartz Sand.
    Sotirelis NP; Chrysikopoulos CV
    Environ Sci Technol; 2015 Nov; 49(22):13413-21. PubMed ID: 26465676
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inactivation modeling of human enteric virus surrogates, MS2, Qβ, and ΦX174, in water using UVC-LEDs, a novel disinfecting system.
    Kim DK; Kim SJ; Kang DH
    Food Res Int; 2017 Jan; 91():115-123. PubMed ID: 28290315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human virus and bacteriophage inactivation in clear water by simulated sunlight compared to bacteriophage inactivation at a southern California beach.
    Love DC; Silverman A; Nelson KL
    Environ Sci Technol; 2010 Sep; 44(18):6965-70. PubMed ID: 20726507
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Virus inactivation during coagulation with aluminum coagulants.
    Matsushita T; Shirasaki N; Matsui Y; Ohno K
    Chemosphere; 2011 Oct; 85(4):571-6. PubMed ID: 21745679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacteriophage inactivation at the air-water-solid interface in dynamic batch systems.
    Thompson SS; Yates MV
    Appl Environ Microbiol; 1999 Mar; 65(3):1186-90. PubMed ID: 10049881
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale.
    Boudaud N; Machinal C; David F; Fréval-Le Bourdonnec A; Jossent J; Bakanga F; Arnal C; Jaffrezic MP; Oberti S; Gantzer C
    Water Res; 2012 May; 46(8):2651-64. PubMed ID: 22421032
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sorption of MS2 bacteriophage to layered double hydroxides: effects of reaction time, pH, and competing anions.
    You Y; Vance GF; Sparks DL; Zhuang J; Jin Y
    J Environ Qual; 2003; 32(6):2046-53. PubMed ID: 14674526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solar photocatalytic disinfection of E. coli and bacteriophages MS2, ΦX174 and PR772 using TiO
    Mac Mahon J; Pillai SC; Kelly JM; Gill LW
    J Photochem Photobiol B; 2017 May; 170():79-90. PubMed ID: 28399477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport of coliphage in the presence and absence of manure suspension.
    Bradford SA; Tadassa YF; Jin Y
    J Environ Qual; 2006; 35(5):1692-701. PubMed ID: 16899741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of goethite coating and humic acid on the transport of bacteriophage PRD1 in columns of saturated sand.
    Foppen JW; Okletey S; Schijven JF
    J Contam Hydrol; 2006 May; 85(3-4):287-301. PubMed ID: 16545888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Attenuation and transport of human enteric viruses and bacteriophage MS2 in alluvial sand and gravel aquifer media-laboratory studies.
    Pang L; Farkas K; Lin S; Hewitt J; Premaratne A; Close M
    Water Res; 2021 May; 196():117051. PubMed ID: 33774351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface charge and adsorption from water onto quartz sand of humic acid.
    Jada A; Ait Akbour R; Douch J
    Chemosphere; 2006 Aug; 64(8):1287-95. PubMed ID: 16481022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cotransport of clay colloids and viruses through water-saturated vertically oriented columns packed with glass beads: Gravity effects.
    Syngouna VI; Chrysikopoulos CV
    Sci Total Environ; 2016 Mar; 545-546():210-8. PubMed ID: 26747984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Virus inactivation in groundwater in a postglacial lava field in arctic climate.
    Benediktsdóttir E; Gunnarsdóttir MJ; Ómarsdóttir BD; Sigurjónsson VÍ; Gardarsson SM
    Lett Appl Microbiol; 2020 Apr; 70(4):282-289. PubMed ID: 31894582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.