These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22819478)

  • 61. Long-term inactivation of bacteriophage PRD1 as a function of temperature, pH, sodium and calcium concentration.
    Schijven JF; Sadeghi G; Hassanizadeh SM
    Water Res; 2016 Oct; 103():66-73. PubMed ID: 27438901
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comparative susceptibilities of hepatitis A virus, feline calicivirus, bacteriophage MS2 and bacteriophage PhiX-174 to inactivation by quaternary ammonium and oxidative disinfectants.
    Solomon EB; Fino V; Wei J; Kniel KE
    Int J Antimicrob Agents; 2009 Mar; 33(3):288-9. PubMed ID: 19095417
    [No Abstract]   [Full Text] [Related]  

  • 63. Mechanisms of virus mitigation and suitability of bacteriophages as surrogates in drinking water treatment by iron electrocoagulation.
    Heffron J; McDermid B; Maher E; McNamara PJ; Mayer BK
    Water Res; 2019 Oct; 163():114877. PubMed ID: 31349091
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Bacteriophage inactivation by UV-A illuminated fullerenes: role of nanoparticle-virus association and biological targets.
    Badireddy AR; Budarz JF; Chellam S; Wiesner MR
    Environ Sci Technol; 2012 Jun; 46(11):5963-70. PubMed ID: 22545948
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Adsorption of MS2 on oxide nanoparticles affects chlorine disinfection and solar inactivation.
    Zhang W; Zhang X
    Water Res; 2015 Feb; 69():59-67. PubMed ID: 25437338
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Investigation of enteric adenovirus and poliovirus removal by coagulation processes and suitability of bacteriophages MS2 and φX174 as surrogates for those viruses.
    Shirasaki N; Matsushita T; Matsui Y; Marubayashi T; Murai K
    Sci Total Environ; 2016 Sep; 563-564():29-39. PubMed ID: 27135564
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Removal of particle-associated bacteriophages by dual-media filtration at different filter cycle stages and impacts on subsequent UV disinfection.
    Templeton MR; Andrews RC; Hofmann R
    Water Res; 2007 Jun; 41(11):2393-406. PubMed ID: 17433406
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Experimental investigation of virus and clay particles cotransport in partially saturated columns packed with glass beads.
    Syngouna VI; Chrysikopoulos CV
    J Colloid Interface Sci; 2015 Feb; 440():140-50. PubMed ID: 25460700
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Investigation of virus attenuation mechanisms in a fluvioglacial sand using column experiments.
    Flynn RM; Rossi P; Hunkeler D
    FEMS Microbiol Ecol; 2004 Jul; 49(1):83-95. PubMed ID: 19712386
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Transport of bacteriophage MS2 and PRD1 in saturated dune sand under suboxic conditions.
    Hornstra LM; Schijven JF; Waade A; Prat GS; Smits FJC; Cirkel G; Stuyfzand PJ; Medema GJ
    Water Res; 2018 Aug; 139():158-167. PubMed ID: 29635152
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles.
    You J; Zhang Y; Hu Z
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):161-7. PubMed ID: 21398101
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bacterial, viral and turbidity removal by intermittent slow sand filtration for household use in developing countries: experimental investigation and modeling.
    Jenkins MW; Tiwari SK; Darby J
    Water Res; 2011 Nov; 45(18):6227-39. PubMed ID: 21974872
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Sunlight inactivation of human viruses and bacteriophages in coastal waters containing natural photosensitizers.
    Silverman AI; Peterson BM; Boehm AB; McNeill K; Nelson KL
    Environ Sci Technol; 2013 Feb; 47(4):1870-8. PubMed ID: 23384052
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The role of nanoparticles (titanium dioxide, graphene oxide) on the inactivation of co-existing bacteria in the presence and absence of quartz sand.
    Syngouna VI; Kourtaki KI; Georgopoulou MP; Chrysikopoulos CV
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19199-19211. PubMed ID: 34709550
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Inactivation of human enteric virus surrogates by high-intensity ultrasound.
    Su X; Zivanovic S; D'Souza DH
    Foodborne Pathog Dis; 2010 Sep; 7(9):1055-61. PubMed ID: 20575674
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bacteriophages and Clostridium spores as indicator organisms for removal of pathogens by passage through saturated dune sand.
    Schijven JF; de Bruin HA; Hassanizadeh SM; de Roda Husman AM
    Water Res; 2003 May; 37(9):2186-94. PubMed ID: 12691904
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment.
    Liga MV; Bryant EL; Colvin VL; Li Q
    Water Res; 2011 Jan; 45(2):535-44. PubMed ID: 20926111
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Adenovirus, MS2 and PhiX174 interactions with drinking water biofilms developed on PVC, cement and cast iron.
    Helmi K; Menard-Szczebara F; Lénès D; Jacob P; Jossent J; Barbot C; Delabre K; Arnal C
    Water Sci Technol; 2010; 61(12):3198-207. PubMed ID: 20555217
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Influence of salts and natural organic matter on the stability of bacteriophage MS2.
    Mylon SE; Rinciog CI; Schmidt N; Gutierrez L; Wong GC; Nguyen TH
    Langmuir; 2010 Jan; 26(2):1035-42. PubMed ID: 19775143
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effects of freezing and storage temperature on MS2 viability.
    Olson MR; Axler RP; Hicks RE
    J Virol Methods; 2004 Dec; 122(2):147-52. PubMed ID: 15542138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.