BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22819593)

  • 21. Polycyclic aromatic hydrocarbon (PAH) emission from co-firing municipal solid waste (MSW) and coal in a fluidized bed incinerator.
    You X
    Waste Manag; 2008; 28(9):1543-51. PubMed ID: 17996438
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suppression of dioxins after the post-combustion zone of MSWIs.
    Zhan M; Chen T; Lin X; Fu J; Li X; Yan J; Buekens A
    Waste Manag; 2016 Aug; 54():153-61. PubMed ID: 27236405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationships between dioxins in soil, air, ash, and emissions from a municipal solid waste incinerator emitting large amounts of dioxins.
    Lorber M; Pinsky P; Gehring P; Braverman C; Winters D; Sovocool W
    Chemosphere; 1998; 37(9-12):2173-97. PubMed ID: 9828336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impacts of human activities on dioxins emissions at national scale.
    Ren Z; Zheng M
    Chemosphere; 2009 Aug; 76(6):853-9. PubMed ID: 19427661
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mercury speciation and emission from municipal solid waste incinerators in the Pearl River Delta, South China.
    Chen L; Liu M; Fan R; Ma S; Xu Z; Ren M; He Q
    Sci Total Environ; 2013 Mar; 447():396-402. PubMed ID: 23410861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The European dioxin air emission inventory project--final results.
    Quass U; Fermann M; Bröker G
    Chemosphere; 2004 Mar; 54(9):1319-27. PubMed ID: 14659425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression of formation of dioxins in combustion gas of municipal waste incinerators by spray water injection.
    Kubota E; Shigechi T; Takemasa T; Momoki S; Arizono K
    Environ Sci; 2007; 14 Suppl():89-95. PubMed ID: 18382417
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of toxic chemicals including dioxin-related compounds by combustion from a small home waste incinerator.
    Nakao T; Aozasa O; Ohta S; Miyata H
    Chemosphere; 2006 Jan; 62(3):459-68. PubMed ID: 15975628
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fate of dioxins in a municipal solid waste incinerator with state-of-the-art air pollution control devices in China.
    Wei J; Li H; Liu J
    Environ Pollut; 2021 Nov; 289():117798. PubMed ID: 34340177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Risk for non Hodgkin's lymphoma in the vicinity of French municipal solid waste incinerators.
    Viel JF; Daniau C; Goria S; Fabre P; de Crouy-Chanel P; Sauleau EA; Empereur-Bissonnet P
    Environ Health; 2008 Oct; 7():51. PubMed ID: 18959776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.
    Damgaard A; Riber C; Fruergaard T; Hulgaard T; Christensen TH
    Waste Manag; 2010 Jul; 30(7):1244-50. PubMed ID: 20378326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simple and rapid yeast reporter bioassay for dioxin screening: evaluation of the dioxin-like compounds in industrial and municipal waste incineration plants.
    Kawanishi M; Ohnisi K; Takigami H; Yagi T
    Environ Sci Pollut Res Int; 2013 May; 20(5):2993-3002. PubMed ID: 23054780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Report: Atmospheric pollutants discharged from municipal solid waste incineration and gasification-melting facilities in Japan.
    Inoue K; Yasuda K; Kawamoto K
    Waste Manag Res; 2009 Sep; 27(6):617-22. PubMed ID: 19470540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elaboration of new formulations to remove micropollutants in MSWI flue gas.
    Brasseur A; Gambin A; Laudet A; Marien J; Pirard JP
    Chemosphere; 2004 Aug; 56(8):745-56. PubMed ID: 15251289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Minimum feeding rate of activated carbon to control dioxin emissions from a large-scale municipal solid waste incinerator.
    Chang YM; Hung CY; Chen JH; Chang CT; Chen CH
    J Hazard Mater; 2009 Jan; 161(2-3):1436-43. PubMed ID: 18599199
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transfer of dioxin risk between nine major municipal waste incinerators in Taiwan.
    Ma HW; Lai YL; Chan CC
    Environ Int; 2002 Apr; 28(1-2):103-10. PubMed ID: 12046946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temporal trends and spatial variation characteristics of hazardous air pollutant emission inventory from municipal solid waste incineration in China.
    Tian H; Gao J; Lu L; Zhao D; Cheng K; Qiu P
    Environ Sci Technol; 2012 Sep; 46(18):10364-71. PubMed ID: 22920612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of backyard burning on dioxin deposition and air concentrations.
    Wevers M; De Fré R; Desmedt M
    Chemosphere; 2004 Mar; 54(9):1351-6. PubMed ID: 14659428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Risk of adverse reproductive outcomes associated with proximity to municipal solid waste incinerators with high dioxin emission levels in Japan.
    Tango T; Fujita T; Tanihata T; Minowa M; Doi Y; Kato N; Kunikane S; Uchiyama I; Tanaka M; Uehata T
    J Epidemiol; 2004 May; 14(3):83-93. PubMed ID: 15242064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling the dioxin emission of a municipal solid waste incinerator using neural networks.
    Bunsan S; Chen WY; Chen HW; Chuang YH; Grisdanurak N
    Chemosphere; 2013 Jul; 92(3):258-64. PubMed ID: 23562548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.