These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 22819961)
1. Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: considerations for sample preparation and measurement conditions. Parsons C; Margui Grabulosa E; Pili E; Floor GH; Roman-Ross G; Charlet L J Hazard Mater; 2013 Nov; 262():1213-22. PubMed ID: 22819961 [TBL] [Abstract][Full Text] [Related]
2. Rapid evaluation of arsenic contamination in paddy soils using field portable X-ray fluorescence spectrometry. Liang JH; Liu PP; Chen Z; Sun GX; Li H J Environ Sci (China); 2018 Feb; 64():345-351. PubMed ID: 29478657 [TBL] [Abstract][Full Text] [Related]
3. Comparison of soil pollution concentrations determined using AAS and portable XRF techniques. Radu T; Diamond D J Hazard Mater; 2009 Nov; 171(1-3):1168-71. PubMed ID: 19595504 [TBL] [Abstract][Full Text] [Related]
4. Use of a field portable X-Ray fluorescence analyzer to determine the concentration of lead and other metals in soil samples. Clark S; Menrath W; Chen M; Roda S; Succop P Ann Agric Environ Med; 1999; 6(1):27-32. PubMed ID: 10384212 [TBL] [Abstract][Full Text] [Related]
5. A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses. Kilbride C; Poole J; Hutchings TR Environ Pollut; 2006 Sep; 143(1):16-23. PubMed ID: 16406626 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of Field Portable X-Ray Fluorescence Performance for the Analysis of Ni in Soil. Du GD; Lei M; Zhou GD; Chen TB; Qiu RL Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):809-13. PubMed ID: 26117902 [TBL] [Abstract][Full Text] [Related]
7. Precision and accuracy of ST-EDXRF performance for As determination comparing with ICP-MS and evaluation of As deviation in the soil media. Akbulut S; Cevik U; Van AA; De Wael K; Van Grieken R Chemosphere; 2014 Feb; 96():16-22. PubMed ID: 23953251 [TBL] [Abstract][Full Text] [Related]
8. In situ monitoring (field screening) and assessment of lead and arsenic contaminants in the greater New Orleans area using a portable X-ray fluorescence analyser. Chou J; Elbers D; Clement G; Bursavich B; Tian T; Zhang W; Yang K J Environ Monit; 2010 Sep; 12(9):1722-9. PubMed ID: 20601988 [TBL] [Abstract][Full Text] [Related]
9. Using portable X-ray fluorescence spectrometry and GIS to assess environmental risk and identify sources of trace metals in soils of peri-urban areas in the Yangtze Delta region, China. Ran J; Wang D; Wang C; Zhang G; Yao L Environ Sci Process Impacts; 2014 Aug; 16(8):1870-7. PubMed ID: 24875935 [TBL] [Abstract][Full Text] [Related]
10. Energy-dispersive X-ray fluorescence systems as analytical tool for assessment of contaminated soils. Vanhoof C; Corthouts V; Tirez K J Environ Monit; 2004 Apr; 6(4):344-50. PubMed ID: 15054544 [TBL] [Abstract][Full Text] [Related]
11. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils. Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255 [TBL] [Abstract][Full Text] [Related]
12. Determination of the feasibility of using a portable X-ray fluorescence (XRF) analyzer in the field for measurement of lead content of sieved soil. Markey AM; Clark CS; Succop PA; Roda S J Environ Health; 2008 Mar; 70(7):24-9; quiz 55-6. PubMed ID: 18348388 [TBL] [Abstract][Full Text] [Related]
13. Assessment of field portable X-ray fluorescence spectrometry for the in situ determination of heavy metals in soils and plants. Gutiérrez-Ginés MJ; Pastor J; Hernández AJ Environ Sci Process Impacts; 2013 Aug; 15(8):1545-52. PubMed ID: 23793270 [TBL] [Abstract][Full Text] [Related]
14. Novel use of field-portable-XRF for the direct analysis of trace elements in marine macroalgae. Bull A; Brown MT; Turner A Environ Pollut; 2017 Jan; 220(Pt A):228-233. PubMed ID: 27692887 [TBL] [Abstract][Full Text] [Related]
15. Electroadsorption-assisted direct determination of trace arsenic without interference using transmission X-ray fluorescence spectroscopy. Jiang TJ; Guo Z; Liu JH; Huang XJ Anal Chem; 2015 Aug; 87(16):8503-9. PubMed ID: 26211572 [TBL] [Abstract][Full Text] [Related]
16. Metals analysis of agricultural soils via portable X-ray fluorescence spectrometry. Hu W; Huang B; Weindorf DC; Chen Y Bull Environ Contam Toxicol; 2014 Apr; 92(4):420-6. PubMed ID: 24585255 [TBL] [Abstract][Full Text] [Related]
17. Feasibility of measuring arsenic and selenium in human skin using in vivo x-ray fluorescence (XRF)--a comparison of methods. Shehab H; Desouza ED; O'Meara J; Pejović-Milić A; Chettle DR; Fleming DE; McNeill FE Physiol Meas; 2016 Jan; 37(1):145-61. PubMed ID: 26683849 [TBL] [Abstract][Full Text] [Related]
18. A calibration method for proposed XRF measurements of arsenic and selenium in nail clippings. Gherase MR; Fleming DE Phys Med Biol; 2011 Oct; 56(20):N215-25. PubMed ID: 21937772 [TBL] [Abstract][Full Text] [Related]
19. Bioaccessible arsenic in soils of former sugar cane plantations, Island of Hawaii. Cutler WG; Brewer RC; El-Kadi A; Hue NV; Niemeyer PG; Peard J; Ray C Sci Total Environ; 2013 Jan; 442():177-88. PubMed ID: 23178778 [TBL] [Abstract][Full Text] [Related]
20. [Determination of Cr, Cu, Zn, Pb and As in soil by field portable X-ray fluorescence spectrometry]. Lu AX; Wang JH; Pan LG; Han P; Han Y Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Oct; 30(10):2848-52. PubMed ID: 21137436 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]