These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 22820098)

  • 1. Influence of main channel structure on H(2)O(2) access to the heme cavity of catalase KatE of Escherichia coli.
    Jha V; Chelikani P; Carpena X; Fita I; Loewen PC
    Arch Biochem Biophys; 2012 Oct; 526(1):54-9. PubMed ID: 22820098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal catalases: function, phylogenetic origin and structure.
    Hansberg W; Salas-Lizana R; Domínguez L
    Arch Biochem Biophys; 2012 Sep; 525(2):170-80. PubMed ID: 22698962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutation of Phe413 to Tyr in catalase KatE from Escherichia coli leads to side chain damage and main chain cleavage.
    Jha V; Donald LJ; Loewen PC
    Arch Biochem Biophys; 2012 Sep; 525(2):207-14. PubMed ID: 22172685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of heme orientation and binding by a single residue in catalase HPII of Escherichia coli.
    Jha V; Louis S; Chelikani P; Carpena X; Donald LJ; Fita I; Loewen PC
    Biochemistry; 2011 Mar; 50(12):2101-10. PubMed ID: 21332158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate flow in catalases deduced from the crystal structures of active site variants of HPII from Escherichia coli.
    Melik-Adamyan W; Bravo J; Carpena X; Switala J; Maté MJ; Fita I; Loewen PC
    Proteins; 2001 Aug; 44(3):270-81. PubMed ID: 11455600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a large subunit catalase truncated by proteolytic cleavage.
    Chelikani P; Carpena X; Perez-Luque R; Donald LJ; Duckworth HW; Switala J; Fita I; Loewen PC
    Biochemistry; 2005 Apr; 44(15):5597-605. PubMed ID: 15823018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity, peroxide compound formation, and heme d synthesis in Escherichia coli HPII catalase.
    Obinger C; Maj M; Nicholls P; Loewen P
    Arch Biochem Biophys; 1997 Jun; 342(1):58-67. PubMed ID: 9185614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unusual Cys-Tyr covalent bond in a large catalase.
    Díaz A; Horjales E; Rudiño-Piñera E; Arreola R; Hansberg W
    J Mol Biol; 2004 Sep; 342(3):971-85. PubMed ID: 15342250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-function relationships in fungal large-subunit catalases.
    Díaz A; Valdés VJ; Rudiño-Piñera E; Horjales E; Hansberg W
    J Mol Biol; 2009 Feb; 386(1):218-32. PubMed ID: 19109972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distal site aspartate is essential in the catalase activity of catalase-peroxidases.
    Jakopitsch C; Auer M; Regelsberger G; Jantschko W; Furtmüller PG; Rüker F; Obinger C
    Biochemistry; 2003 May; 42(18):5292-300. PubMed ID: 12731870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrical potential in the access channel of catalases enhances catalysis.
    Chelikani P; Carpena X; Fita I; Loewen PC
    J Biol Chem; 2003 Aug; 278(33):31290-6. PubMed ID: 12777389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two alternative substrate paths for compound I formation and reduction in catalase-peroxidase KatG from Burkholderia pseudomallei.
    Deemagarn T; Wiseman B; Carpena X; Ivancich A; Fita I; Loewen PC
    Proteins; 2007 Jan; 66(1):219-28. PubMed ID: 17063492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalase evolved to concentrate H2O2 at its active site.
    Domínguez L; Sosa-Peinado A; Hansberg W
    Arch Biochem Biophys; 2010 Aug; 500(1):82-91. PubMed ID: 20494646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of the H-bond network in the main access channel of catalase-peroxidase modulates enthalpy and entropy of Fe(III) reduction.
    Vlasits J; Bellei M; Jakopitsch C; De Rienzo F; Furtmüller PG; Zamocky M; Sola M; Battistuzzi G; Obinger C
    J Inorg Biochem; 2010 Jun; 104(6):648-56. PubMed ID: 20347488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of how gate residues in the main channel affect the catalytic activity of Scytalidium thermophilum catalase.
    Yuzugullu Karakus Y; Goc G; Zengin Karatas M; Balci Unver S; Yorke BA; Pearson AR
    Acta Crystallogr D Struct Biol; 2024 Feb; 80(Pt 2):101-112. PubMed ID: 38265876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the Clade 1 catalase, CatF of Pseudomonas syringae, at 1.8 A resolution.
    Carpena X; Soriano M; Klotz MG; Duckworth HW; Donald LJ; Melik-Adamyan W; Fita I; Loewen PC
    Proteins; 2003 Feb; 50(3):423-36. PubMed ID: 12557185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalases versus peroxidases: DFT investigation of H₂O₂ oxidation in models systems and implications for heme protein engineering.
    Vidossich P; Alfonso-Prieto M; Rovira C
    J Inorg Biochem; 2012 Dec; 117():292-7. PubMed ID: 22883961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic state of the molecular oxygen released by catalase.
    Alfonso-Prieto M; Vidossich P; Rodríguez-Fortea A; Carpena X; Fita I; Loewen PC; Rovira C
    J Phys Chem A; 2008 Dec; 112(50):12842-8. PubMed ID: 18816030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between the size of the bottleneck 15 A from iron in the main channel and the reactivity of catalase corresponding to the molecular size of substrates.
    Hara I; Ichise N; Kojima K; Kondo H; Ohgiya S; Matsuyama H; Yumoto I
    Biochemistry; 2007 Jan; 46(1):11-22. PubMed ID: 17198371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism.
    Putnam CD; Arvai AS; Bourne Y; Tainer JA
    J Mol Biol; 2000 Feb; 296(1):295-309. PubMed ID: 10656833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.