These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22820518)

  • 1. A microfluidic flow-stretch chip for investigating blood vessel biomechanics.
    Zheng W; Jiang B; Wang D; Zhang W; Wang Z; Jiang X
    Lab Chip; 2012 Sep; 12(18):3441-50. PubMed ID: 22820518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.
    Yu JQ; Liu XF; Chin LK; Liu AQ; Luo KQ
    Lab Chip; 2013 Jul; 13(14):2693-700. PubMed ID: 23620256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbioreactors to manipulate oxygen tension and shear stress in the microenvironment of vascular stem and progenitor cells.
    Abaci HE; Devendra R; Soman R; Drazer G; Gerecht S
    Biotechnol Appl Biochem; 2012; 59(2):97-105. PubMed ID: 23586790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tapered microfluidic chip for the study of biochemical and mechanical response at subcellular level of endothelial cells to shear flow.
    Rossi M; Lindken R; Hierck BP; Westerweel J
    Lab Chip; 2009 May; 9(10):1403-11. PubMed ID: 19417907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic artificial "vessels" for dynamic mechanical stimulation of mesenchymal stem cells.
    Zhou J; Niklason LE
    Integr Biol (Camb); 2012 Dec; 4(12):1487-97. PubMed ID: 23114826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations.
    Liu MC; Shih HC; Wu JG; Weng TW; Wu CY; Lu JC; Tung YC
    Lab Chip; 2013 May; 13(9):1743-53. PubMed ID: 23475014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis.
    Shin MK; Kim SK; Jung H
    Lab Chip; 2011 Nov; 11(22):3880-7. PubMed ID: 21975823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular lumen simulation and highly-sensitive nitric oxide detection using three-dimensional gelatin chip coupled to TiC/C nanowire arrays microelectrode.
    Li LM; Wang XY; Hu LS; Chen RS; Huang Y; Chen SJ; Huang WH; Huo KF; Chu PK
    Lab Chip; 2012 Nov; 12(21):4249-56. PubMed ID: 22903191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of a microfluidic cell culture platform embedded with nanoscale features.
    Yang Y; Kulangara K; Sia J; Wang L; Leong KW
    Lab Chip; 2011 May; 11(9):1638-46. PubMed ID: 21442110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of CRP3/MLP expression during vein arterialization is dependent on stretch rather than shear stress.
    Campos LC; Miyakawa AA; Barauna VG; Cardoso L; Borin TF; Dallan LA; Krieger JE
    Cardiovasc Res; 2009 Jul; 83(1):140-7. PubMed ID: 19351738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous generation of chemical concentration and mechanical shear stress gradients using microfluidic osmotic flow comparable to interstitial flow.
    Park JY; Yoo SJ; Hwang CM; Lee SH
    Lab Chip; 2009 Aug; 9(15):2194-202. PubMed ID: 19606296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment of a microcarrier culture system with serial sub-cultivation for functionally active human endothelial cells.
    Tashiro S; Tsumoto K; Sano E
    J Biotechnol; 2012 Aug; 160(3-4):202-13. PubMed ID: 22465290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered living blood vessels: functional endothelia generated from human umbilical cord-derived progenitors.
    Schmidt D; Asmis LM; Odermatt B; Kelm J; Breymann C; Gössi M; Genoni M; Zund G; Hoerstrup SP
    Ann Thorac Surg; 2006 Oct; 82(4):1465-71; discussion 1471. PubMed ID: 16996955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelium oriented differentiation of bone marrow mesenchymal stem cells under chemical and mechanical stimulations.
    Bai K; Huang Y; Jia X; Fan Y; Wang W
    J Biomech; 2010 Apr; 43(6):1176-81. PubMed ID: 20022602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical stimulation of bone cells using fluid flow.
    Huesa C; Bakker AD
    Methods Mol Biol; 2012; 816():573-92. PubMed ID: 22130953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collaborative effects of electric field and fluid shear stress on fibroblast migration.
    Song S; Han H; Ko UH; Kim J; Shin JH
    Lab Chip; 2013 Apr; 13(8):1602-11. PubMed ID: 23450300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of reactive oxygen species in endothelial cells under different pulsatile shear stresses and glucose concentrations.
    Chin LK; Yu JQ; Fu Y; Yu T; Liu AQ; Luo KQ
    Lab Chip; 2011 Jun; 11(11):1856-63. PubMed ID: 21373653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of functional, perfusable 3D microvascular networks on a chip.
    Kim S; Lee H; Chung M; Jeon NL
    Lab Chip; 2013 Apr; 13(8):1489-500. PubMed ID: 23440068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of combined cyclic stretch and fluid shear stress on endothelial cell morphological responses.
    Owatverot TB; Oswald SJ; Chen Y; Wille JJ; Yin FC
    J Biomech Eng; 2005 Jun; 127(3):374-82. PubMed ID: 16060344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.