BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 22820614)

  • 1. Accumulation of arsenic by aquatic plants in large-scale field conditions: opportunities for phytoremediation and bioindication.
    Favas PJ; Pratas J; Prasad MN
    Sci Total Environ; 2012 Sep; 433():390-7. PubMed ID: 22820614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation.
    Favas PJ; Pratas J; Varun M; D'Souza R; Paul MS
    Sci Total Environ; 2014 Feb; 470-471():993-1002. PubMed ID: 24239820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uranium accumulation by aquatic plants from uranium-contaminated water in Central Portugal.
    Pratas J; Favas PJ; Paulo C; Rodrigues N; Prasad MN
    Int J Phytoremediation; 2012 Mar; 14(3):221-34. PubMed ID: 22567707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aquatic arsenic: phytoremediation using floating macrophytes.
    Rahman MA; Hasegawa H
    Chemosphere; 2011 Apr; 83(5):633-46. PubMed ID: 21435676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opportunities for Phytoremediation and Bioindication of Arsenic Contaminated Water Using a Submerged Aquatic Plant:Vallisneria natans (lour.) Hara.
    Chen G; Liu X; Brookes PC; Xu J
    Int J Phytoremediation; 2015; 17(1-6):249-55. PubMed ID: 25397983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine.
    Favas PJC; Pratas J; Mitra S; Sarkar SK; Venkatachalam P
    Sci Total Environ; 2016 Oct; 568():350-368. PubMed ID: 27314898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake and toxicity of arsenic, copper, and silicon in Azolla caroliniana and Lemna minor.
    Rofkar JR; Dwyer DF; Bobak DM
    Int J Phytoremediation; 2014; 16(2):155-66. PubMed ID: 24912207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the potential of Pistia stratiotes L. (water lettuce) for bioindication and phytoremediation of aquatic environments contaminated with arsenic.
    Farnese FS; Oliveira JA; Lima FS; Leão GA; Gusman GS; Silva LC
    Braz J Biol; 2014 Aug; 74(3 Suppl 1):S108-12. PubMed ID: 25627371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle.
    Xue PY; Yan CZ
    Chemosphere; 2011 Nov; 85(7):1176-81. PubMed ID: 22024098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies?
    Zabłudowska E; Kowalska J; Jedynak L; Wojas S; Skłodowska A; Antosiewicz DM
    Chemosphere; 2009 Oct; 77(3):301-7. PubMed ID: 19733893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany.
    Mkandawire M; Dudel EG
    Sci Total Environ; 2005 Jan; 336(1-3):81-9. PubMed ID: 15589251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cadmium accumulation in the rootless macrophyte Wolffia globosa and its potential for phytoremediation.
    Xie WY; Huang Q; Li G; Rensing C; Zhu YG
    Int J Phytoremediation; 2013; 15(4):385-97. PubMed ID: 23488004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil.
    Jankong P; Visoottiviseth P
    Chemosphere; 2008 Jul; 72(7):1092-7. PubMed ID: 18499218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A short-term study to evaluate the uptake and accumulation of arsenic in Asian willow (Salix sp.) from arsenic-contaminated water.
    Chen G; Zou X; Zhou Y; Zhang J; Owens G
    Environ Sci Pollut Res Int; 2014 Mar; 21(5):3275-84. PubMed ID: 24217972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic uptake by Lemna minor in hydroponic system.
    Goswami C; Majumder A; Misra AK; Bandyopadhyay K
    Int J Phytoremediation; 2014; 16(7-12):1221-7. PubMed ID: 24933913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metal pollution in lentic ecosystem of sub-tropical industrial region and its phytoremediation.
    Rai PK
    Int J Phytoremediation; 2010 Mar; 12(3):226-42. PubMed ID: 20734618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capacity of Lemna gibba L. (duckweed) for uranium and arsenic phytoremediation in mine tailing waters.
    Mkandawire M; Taubert B; Dudel EG
    Int J Phytoremediation; 2004; 6(4):347-62. PubMed ID: 15696706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides.
    Zhang X; Lin AJ; Zhao FJ; Xu GZ; Duan GL; Zhu YG
    Environ Pollut; 2008 Dec; 156(3):1149-55. PubMed ID: 18457908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal processes for arsenic in constructed wetlands.
    Lizama A K; Fletcher TD; Sun G
    Chemosphere; 2011 Aug; 84(8):1032-43. PubMed ID: 21549410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.