These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 22820636)

  • 21. Item- and task-level processes in the left inferior prefrontal cortex: positive and negative correlates of encoding.
    Reynolds JR; Donaldson DI; Wagner AD; Braver TS
    Neuroimage; 2004 Apr; 21(4):1472-83. PubMed ID: 15050572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural correlates of Korean proverb processing: A functional magnetic resonance imaging study.
    Yi YG; Kim DY; Shim WH; Oh JY; Kim SH; Kim HS
    Brain Behav; 2017 Oct; 7(10):e00829. PubMed ID: 29075575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Medial temporal lobe function and recognition memory: a novel approach to separating the contribution of recollection and familiarity.
    Song Z; Jeneson A; Squire LR
    J Neurosci; 2011 Nov; 31(44):16026-32. PubMed ID: 22049444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Medial temporal lobe reinstatement of content-specific details predicts source memory.
    Liang JC; Preston AR
    Cortex; 2017 Jun; 91():67-78. PubMed ID: 28029355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms underlying encoding of short-lived versus durable episodic memories.
    Sneve MH; Grydeland H; Nyberg L; Bowles B; Amlien IK; Langnes E; Walhovd KB; Fjell AM
    J Neurosci; 2015 Apr; 35(13):5202-12. PubMed ID: 25834046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deficits in process-specific prefrontal and hippocampal activations contribute to adult age differences in episodic memory interference.
    Fandakova Y; Lindenberger U; Shing YL
    Cereb Cortex; 2014 Jul; 24(7):1832-44. PubMed ID: 23425890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of performance on an automated visual recognition memory task in 7.5-month-old infants.
    Dzwilewski KLC; Merced-Nieves FM; Aguiar A; Korrick SA; Schantz SL
    Neurotoxicol Teratol; 2020; 81():106904. PubMed ID: 32485220
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Medial temporal and prefrontal contributions to working memory tasks with novel and familiar stimuli.
    Stern CE; Sherman SJ; Kirchhoff BA; Hasselmo ME
    Hippocampus; 2001; 11(4):337-46. PubMed ID: 11530838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural bases of autobiographical support for episodic recollection of faces.
    Trinkler I; King JA; Doeller CF; Rugg MD; Burgess N
    Hippocampus; 2009 Aug; 19(8):718-30. PubMed ID: 19173228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Representations of Complex Contexts: A Role for Hippocampus.
    Dimsdale-Zucker HR; Montchal ME; Reagh ZM; Wang SF; Libby LA; Ranganath C
    J Cogn Neurosci; 2022 Dec; 35(1):90-110. PubMed ID: 36166300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Perirhinal and hippocampal contributions to visual recognition memory can be distinguished from those of occipito-temporal structures based on conscious awareness of prior occurrence.
    Danckert SL; Gati JS; Menon RS; Köhler S
    Hippocampus; 2007; 17(11):1081-92. PubMed ID: 17696171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decreased fMRI activity in the hippocampus of patients with schizophrenia compared to healthy control participants, tested on a wayfinding task in a virtual town.
    Ledoux AA; Phillips JL; Labelle A; Smith A; Bohbot VD; Boyer P
    Psychiatry Res; 2013 Jan; 211(1):47-56. PubMed ID: 23352276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissociation of the Perirhinal Cortex and Hippocampus During Discriminative Learning of Similar Objects.
    Chen H; Zhou W; Yang J
    J Neurosci; 2019 Jul; 39(31):6190-6201. PubMed ID: 31167939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Age differences in the neural correlates of novelty processing: The effects of item-relatedness.
    Bowman CR; Dennis NA
    Brain Res; 2015 Jul; 1612():2-15. PubMed ID: 25149192
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separation of item and context in item-method directed forgetting.
    Chiu YC; Wang TH; Beck DM; Lewis-Peacock JA; Sahakyan L
    Neuroimage; 2021 Jul; 235():117983. PubMed ID: 33762219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissociation of the neural correlates of visual and auditory contextual encoding.
    Gottlieb LJ; Uncapher MR; Rugg MD
    Neuropsychologia; 2010 Jan; 48(1):137-44. PubMed ID: 19720071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cortical Overlap and Cortical-Hippocampal Interactions Predict Subsequent True and False Memory.
    Wing EA; Geib BR; Wang WC; Monge Z; Davis SW; Cabeza R
    J Neurosci; 2020 Feb; 40(9):1920-1930. PubMed ID: 31974208
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential functional response in the posteromedial cortices and hippocampus to stimulus repetition during successful memory encoding.
    Vannini P; Hedden T; Sullivan C; Sperling RA
    Hum Brain Mapp; 2013 Jul; 34(7):1568-78. PubMed ID: 22344847
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pre-stimulus neural activity predicts successful encoding of inter-item associations.
    Addante RJ; de Chastelaine M; Rugg MD
    Neuroimage; 2015 Jan; 105():21-31. PubMed ID: 25450109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repetition of letter strings leads to activation of and connectivity with word-related regions.
    Fisher JE; Cortes CR; Griego JA; Tagamets MA
    Neuroimage; 2012 Feb; 59(3):2839-49. PubMed ID: 21982931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.