BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 22820743)

  • 1. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue.
    Kim KH; Oh Y; Islam MF
    Nat Nanotechnol; 2012 Sep; 7(9):562-6. PubMed ID: 22820743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced mechanical properties of nanocomposites at low graphene content.
    Rafiee MA; Rafiee J; Wang Z; Song H; Yu ZZ; Koratkar N
    ACS Nano; 2009 Dec; 3(12):3884-90. PubMed ID: 19957928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drastically Enhancing Moduli of Graphene-Coated Carbon Nanotube Aerogels via Densification while Retaining Temperature-Invariant Superelasticity and Ultrahigh Efficiency.
    Tsui MN; Kim KH; Islam MF
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37954-37961. PubMed ID: 28991429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superelastic Pseudocapacitors from Freestanding MnO
    Zhao Y; Li MP; Liu S; Islam MF
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23810-23819. PubMed ID: 28636819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastrong, foldable, and highly conductive carbon nanotube film.
    Di J; Hu D; Chen H; Yong Z; Chen M; Feng Z; Zhu Y; Li Q
    ACS Nano; 2012 Jun; 6(6):5457-64. PubMed ID: 22591354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viable synthesis of highly compressible, ultra-light graphene-carbon nanotube composite aerogels without additional reductant and their applications for strain-sensitivity.
    Gao L; Wang F; Zhan W; Wang Y; Sui G; Yang X
    Chem Commun (Camb); 2017 Jan; 53(3):521-524. PubMed ID: 27917430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-walled carbon nanotube aerogel-based elastic conductors.
    Kim KH; Vural M; Islam MF
    Adv Mater; 2011 Jul; 23(25):2865-9. PubMed ID: 21495087
    [No Abstract]   [Full Text] [Related]  

  • 8. Structure and process-dependent properties of solid-state spun carbon nanotube yarns.
    Fang S; Zhang M; Zakhidov AA; Baughman RH
    J Phys Condens Matter; 2010 Aug; 22(33):334221. PubMed ID: 21386511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites.
    Hou Y; Tang J; Zhang H; Qian C; Feng Y; Liu J
    ACS Nano; 2009 May; 3(5):1057-62. PubMed ID: 19397293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape-Memory and Anisotropic Carbon Aerogel from Biomass and Graphene Oxide.
    Lin Z; Jiang W; Chen Z; Zhong L; Liu C
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superelastic carbon aerogels with anisotropic and hierarchically-enhanced cellular structure for wearable piezoresistive sensors.
    Ye W; Meng L; Xi J; Bian H; Xu Z; Xiao H; Zhang L; Wu W
    J Colloid Interface Sci; 2024 Jul; 666():529-539. PubMed ID: 38613975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue resistance of aligned carbon nanotube arrays under cyclic compression.
    Suhr J; Victor P; Ci L; Sreekala S; Zhang X; Nalamasu O; Ajayan PM
    Nat Nanotechnol; 2007 Jul; 2(7):417-21. PubMed ID: 18654325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors.
    Kuang J; Dai Z; Liu L; Yang Z; Jin M; Zhang Z
    Nanoscale; 2015; 7(20):9252-60. PubMed ID: 25932597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High strength, low stiffness, porous NiTi with superelastic properties.
    Greiner C; Oppenheimer SM; Dunand DC
    Acta Biomater; 2005 Nov; 1(6):705-16. PubMed ID: 16701851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diameter-dependent dissipation of vibration energy of cantilevered multiwall carbon nanotubes.
    Sawaya S; Arie T; Akita S
    Nanotechnology; 2011 Apr; 22(16):165702. PubMed ID: 21393815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creep- and fatigue-resistant, rapid piezoresistive responses of elastomeric graphene-coated carbon nanotube aerogels over a wide pressure range.
    Tsui MN; Islam MF
    Nanoscale; 2017 Jan; 9(3):1128-1135. PubMed ID: 28009903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotube and graphene multiple-thread yarns.
    Zhong X; Wang R; Yangyang W; Yali L
    Nanoscale; 2013 Feb; 5(3):1183-7. PubMed ID: 23299393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic properties of carbon nanotubes: an atomistic approach.
    Cherian R; Mahadevan P
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1779-82. PubMed ID: 17654938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores.
    Xu Z; Zhang Y; Li P; Gao C
    ACS Nano; 2012 Aug; 6(8):7103-13. PubMed ID: 22799441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-Invariant Superelastic and Fatigue Resistant Carbon Nanofiber Aerogels.
    Li C; Ding YW; Hu BC; Wu ZY; Gao HL; Liang HW; Chen JF; Yu SH
    Adv Mater; 2020 Jan; 32(2):e1904331. PubMed ID: 31773829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.