These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 22820761)

  • 1. Periodic overlayers and moiré patterns: theoretical studies of geometric properties.
    Hermann K
    J Phys Condens Matter; 2012 Aug; 24(31):314210. PubMed ID: 22820761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization and delocalization of light in photonic moiré lattices.
    Wang P; Zheng Y; Chen X; Huang C; Kartashov YV; Torner L; Konotop VV; Ye F
    Nature; 2020 Jan; 577(7788):42-46. PubMed ID: 31853062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moiré, Euler and self-similarity - the lattice parameters of twisted hexagonal crystals.
    Feuerbacher M
    Acta Crystallogr A Found Adv; 2021 Sep; 77(Pt 5):460-471. PubMed ID: 34473099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-oriented moiré superstructures of graphene on Ir(111): experimental observations and theoretical models.
    Meng L; Wu R; Zhang L; Li L; Du S; Wang Y; Gao HJ
    J Phys Condens Matter; 2012 Aug; 24(31):314214. PubMed ID: 22820951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of gradient photonic moiré lattice fields.
    Shang C; Lu C; Tang S; Gao Y; Wen Z
    Opt Express; 2021 Aug; 29(18):29116-29127. PubMed ID: 34615028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light bullets in moiré lattices.
    Kartashov YV
    Opt Lett; 2022 Sep; 47(17):4528-4531. PubMed ID: 36048696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating the Generation of Photonic Moiré Lattices Using Plasmonic Metasurfaces.
    Mu Z; Zhang Y; An J; Zhang X; Zhou H; Song H; He C; Liu G; Cheng C
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38276748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge transport through one-dimensional Moiré crystals.
    Bonnet R; Lherbier A; Barraud C; Della Rocca ML; Lafarge P; Charlier JC
    Sci Rep; 2016 Jan; 6():19701. PubMed ID: 26786067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrahigh-resolution scanning microwave impedance microscopy of moiré lattices and superstructures.
    Lee K; Utama MIB; Kahn S; Samudrala A; Leconte N; Yang B; Wang S; Watanabe K; Taniguchi T; Altoé MVP; Zhang G; Weber-Bargioni A; Crommie M; Ashby PD; Jung J; Wang F; Zettl A
    Sci Adv; 2020 Dec; 6(50):. PubMed ID: 33298449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunability of supramolecular Kagome lattices of magnetic phthalocyanines using graphene-based moire patterns as templates.
    Mao J; Zhang H; Jiang Y; Pan Y; Gao M; Xiao W; Gao HJ
    J Am Chem Soc; 2009 Oct; 131(40):14136-7. PubMed ID: 19764749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light localization in defective periodic photonic moiré-like lattices.
    Wen Z; Wan X; He Y; Wang Y; Wen Z; Gao Y; Zhang W; Qi X
    J Opt Soc Am A Opt Image Sci Vis; 2022 Dec; 39(12):2291-2297. PubMed ID: 36520748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Far-field coupling between moiré photonic lattices.
    Guan J; Hu J; Wang Y; Tan MJH; Schatz GC; Odom TW
    Nat Nanotechnol; 2023 May; 18(5):514-520. PubMed ID: 36781995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approximate scheme by the coupled-wave theory to efficiently analyze the influences of moiré phenomena in liquid-crystal devices.
    Ho IL; Wang TC; Chang YC; Li WY
    Appl Opt; 2012 Aug; 51(24):5806-11. PubMed ID: 22907007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TEM nano-Moiré evaluation for an invisible lattice structure near the grain interface.
    Zhang H; Wen H; Liu Z; Zhang Q; Xie H
    Nanoscale; 2017 Oct; 9(41):15923-15933. PubMed ID: 29019497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Symmetry of semi-reduced lattices.
    Stróż K
    Acta Crystallogr A Found Adv; 2015 May; 71(Pt 3):268-78. PubMed ID: 25921495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principles of helix-helix packing in proteins: the helical lattice superposition model.
    Walther D; Eisenhaber F; Argos P
    J Mol Biol; 1996 Jan; 255(3):536-53. PubMed ID: 8568896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moiré patterns as a probe of interplanar interactions for graphene on h-BN.
    van Wijk MM; Schuring A; Katsnelson MI; Fasolino A
    Phys Rev Lett; 2014 Sep; 113(13):135504. PubMed ID: 25302903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Au111-based nanotemplates by gd alloying.
    Corso M; Fernández L; Schiller F; Ortega JE
    ACS Nano; 2010 Mar; 4(3):1603-11. PubMed ID: 20146459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moiré patterns in electron microscopy with atomic focuser crystals.
    Cowley JM; Ooi N; Dunin-Borkowski RE
    Acta Crystallogr A; 1999 May; 55(Pt 3):533-542. PubMed ID: 10926697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. STEM moiré analysis for 2D strain measurements.
    Ishizuka A; Hytch M; Ishizuka K
    Microscopy (Oxf); 2017 Jun; 66(3):217-221. PubMed ID: 28339765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.