These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 22820974)

  • 21. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Han JT; Kim S; Karim A
    Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of Biomimetic Fog-Collecting Superhydrophilic-Superhydrophobic Surface Micropatterns Using Femtosecond Lasers.
    Kostal E; Stroj S; Kasemann S; Matylitsky V; Domke M
    Langmuir; 2018 Mar; 34(9):2933-2941. PubMed ID: 29364677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water repellent porous silica films by sol-gel dip coating method.
    Rao AV; Gurav AB; Latthe SS; Vhatkar RS; Imai H; Kappenstein C; Wagh PB; Gupta SC
    J Colloid Interface Sci; 2010 Dec; 352(1):30-5. PubMed ID: 20822773
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous fabrication of superhydrophobic and superhydrophilic polyimide surfaces with low hysteresis.
    Scheen G; Ziouche K; Bougrioua Z; Godts P; Leclercq D; Lasri T
    Langmuir; 2011 May; 27(10):6490-5. PubMed ID: 21520916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-lasting antifog plasma modification of transparent plastics.
    Di Mundo R; d'Agostino R; Palumbo F
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17059-66. PubMed ID: 25251610
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles.
    Xu L; He J
    Langmuir; 2012 May; 28(19):7512-8. PubMed ID: 22533369
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wrinkled Graphene Monoliths as Superabsorbing Building Blocks for Superhydrophobic and Superhydrophilic Surfaces.
    Lv LB; Cui TL; Zhang B; Wang HH; Li XH; Chen JS
    Angew Chem Int Ed Engl; 2015 Dec; 54(50):15165-9. PubMed ID: 26440454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water-based, nonfluorinated dispersions for environmentally benign, large-area, superhydrophobic coatings.
    Schutzius TM; Bayer IS; Qin J; Waldroup D; Megaridis CM
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13419-25. PubMed ID: 24295138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces.
    Choi W; Tuteja A; Mabry JM; Cohen RE; McKinley GH
    J Colloid Interface Sci; 2009 Nov; 339(1):208-16. PubMed ID: 19683717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spray-coated fluorine-free superhydrophobic coatings with easy repairability and applicability.
    Wu W; Wang X; Liu X; Zhou F
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1656-61. PubMed ID: 20355780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces.
    Liu X; He J
    Langmuir; 2009 Oct; 25(19):11822-6. PubMed ID: 19788228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facile and multiple replication of superhydrophilic-superhydrophobic patterns using adhesive tape.
    Auad P; Ueda E; Levkin PA
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8053-7. PubMed ID: 23899464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reactive surface coatings based on polysilsesquioxanes: defined adjustment of surface wettability.
    Kessler D; Theato P
    Langmuir; 2009 Dec; 25(24):14200-6. PubMed ID: 19371043
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioinspired patterning with extreme wettability contrast on TiO2 nanotube array surface: a versatile platform for biomedical applications.
    Lai Y; Lin L; Pan F; Huang J; Song R; Huang Y; Lin C; Fuchs H; Chi L
    Small; 2013 Sep; 9(17):2945-53. PubMed ID: 23420792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of chemistry on wetting dynamics of nanotextured hydrophobic surfaces.
    Di Mundo R; Palumbo F; d'Agostino R
    Langmuir; 2010 Apr; 26(7):5196-201. PubMed ID: 19950937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patterned superhydrophobic metallic surfaces.
    Kietzig AM; Hatzikiriakos SG; Englezos P
    Langmuir; 2009 Apr; 25(8):4821-7. PubMed ID: 19267439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of Carbon Nanoparticle Coatings via Wettability.
    Griffo R; Di Natale F; Minale M; Sirignano M; Parisi A; Carotenuto C
    Nanomaterials (Basel); 2024 Feb; 14(3):. PubMed ID: 38334572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superhydrophobic surfaces engineered using diatomaceous earth.
    Oliveira NM; Reis RL; Mano JF
    ACS Appl Mater Interfaces; 2013 May; 5(10):4202-8. PubMed ID: 23647196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wettability of biomimetic thermally grown aluminum oxide coatings.
    Samad JE; Nychka JA
    Bioinspir Biomim; 2011 Mar; 6(1):016004. PubMed ID: 21252413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.